1. Sommerfeld, A. N., "Propagation of waves in wireless telegraphy," Ann. Phys., Vol. 28, 665-736, Mar. 1909; and Vol. 81, 1135–1153, Dec. 1926.
doi:10.1002/andp.19093330402 Google Scholar
2. Wait, J. R., "The ancient and modern history of EM ground wave propagation," IEEE Antennas and Propagation Magazine, Vol. 40, No. 5, 7-24, Oct. 1998, [online], available: http://dx.doi.org-/10.1109/74.735961.
doi:10.1109/74.735961 Google Scholar
3. King, R. J., "Electromagnetic wave propagation over a constant impedance plane," Electromagnetic wave propagation over a constant impedance plane, Vol. 4, 225-268, 1969, [online], available: http://dx.doi.org/10.1029/RS004i003p00255. Google Scholar
4. Zenneck, J., "Propagation of plane EM waves along a plane conducting surface," Ann. Phys. (Leipzig), Vol. 23, 846-866, 1907.
doi:10.1002/andp.19073281003 Google Scholar
5. Sarkar, T. K., et al. "Electromagnetic macro modelling of propagation in mobile wireless communication: Theory and experiment," IEEE Antennas and Propagation Magazine, Vol. 54, No. 6, 17-43, Dec. 2012, [online], available: http://dx.doi.org/10.1109/MAP.2012.6387779.
doi:10.1109/MAP.2012.6387779 Google Scholar
6. Bladel, J. G. V., Electromagnetic Fields, Section 9.3: The Sommerfeld Dipole Problem, 448–452, J. Wiley and Sons, Inc., Hoboken, 2007.
7. Banos, A., Jr., Dipole Radiation in the Presence of a Conducting Half-space, Pergamon, 1966.
8. Tyras, G., Radiation and Propagation of Electromagnetic Waves, Academic Press, 1969.
9. Rahmat-Samii, Y., R. Mittra, and P. Parhami, "Evaluation of Sommerfeld integrals for lossy halfspace problems," Electromagn., Vol. 1, 1-28, 1981, [online], available: http://dx.doi.org/10.1080-/02726348108915122.
doi:10.1080/02726348108915122 Google Scholar
10. Collin, R. E., "Hertzian dipole radiating over a lossy earth or sea: Some early and late 20th-century controversies," IEEE Antennas and Propagation Magazine, Vol. 46, No. 2, 64-79, Apr. 2004, [online], available: http://dx.doi.org/10.1109/MAP.2004.1305535.
doi:10.1109/MAP.2004.1305535 Google Scholar
11. Michalski, K. A., "On the efficient evaluation of the integrals arising in the Sommerfeld half-space problem," Inst. Elect. Eng. Proc. Part H — Microwave, Antennas Propagat., Vol. 132, No. 5, 312-318, Aug. 1985, [online], available: http://dx.doi.org/10.1049/ip-h-2.1985.0056.
doi:10.1049/ip-h-2.1985.0056 Google Scholar
12. Pelosi, G. and J. L. Volakis, "The centennial of Sommerfeld’s diffraction problem," Electromagnetics, Vol. 18, No. 2-3, Special Issue, Mar.–Jun. 1998. Google Scholar
13. Norton, K. A., "The propagation of radio waves over the surface of the Earth," Proceedings of the IRE, Vol. 24, 1367-1387, 1936; and Vol. 25, 1203–1236, 1937, [online], available: http://dx.doi.org-/10.1109/JRPROC.1936.227360.
doi:10.1109/JRPROC.1936.227360 Google Scholar
14. Sautbekov, S., Electromagnetic Waves Propagation in Complex Matter, Chapter: “The Generalized Solutions of a System of Maxwell’s Equations for the Uniaxial Anisotropic Media”, INTECH, 2011, [online], available: http://www.intechopen.com/books/electromagnetic-wavespropagation-in-complex-matter/the-generalized-solutions-of-a-system-of-maxwell-s-equations-forthe-uniaxialanisotropic-media.
15. Christakis, C., K. Ioannidi, S. Sautbekov, P. Frangos, and S. K. Atanov, "The radiation problem from a vertical short dipole antenna above flat and lossy ground: Novel formulation in the spectral domain with closed-form analytical solution in the high frequency regime," Electronics and Electrical Engineering Journal, Vol. 20, No. 9, 35-38, Nov. 2014, [online], available: http://dx.doi.org/10.5755/j01.eee.20.9.8710. Google Scholar
16. Ioannidi, K., C. Christakis, S. Sautbekov, P. Frangos, and S. K. Atanov, "The radiation problem from a vertical Hertzian dipole antenna above flat and lossy ground: Novel formulation in the spectral domain with closed-form analytical solution in the high frequency regime," International Journal Antennas and Propagation (IJAP), Hindawi Ed. Co., Special Issue Propagation of Electromagnetic (EM) Waves over Terrain (PEWT), Vol. 2014, Article ID 989348, [online], available: http://dx.doi.org/10.1155/2014/989348. Google Scholar
17. Balanis, C. A., Antenna Theory: Analysis and Design, Appendix VIII:Method of Stationary Phase, 922–927, J. Wiley and Sons Inc., New York, 1997.
18. Moschovitis, C. G., H. Anastassiu, and P. V. Frangos, "Scattering of electromagnetic waves from a rectangular plate using an extended stationary phase method based on fresnel functions (SPM-F)," Progress In Electromagnetic Research, Vol. 107, 63-99, 2010.
doi:10.2528/PIER10040104 Google Scholar
19. Fikioris, J., Introduction to Antenna Theory and Propagation of Electromagnetic Waves, National Technical University of Athens (NTUA), Greek, Athens, Greece, 1982.
20. Arfken, G., Mathematical Methods for Physicists, 3rd Ed., 400-414, Academic Press Inc., Orlando, Florida, USA, 1985.
21. Bourgiotis, S., K. Ioannidi, C. Christakis, S. Sautbekov, and P. Frangos, "The radiation problem from a vertical short dipole antenna above flat and lossy ground: Novel formulation in the spectral domain with numerical solution and closed-form analytical solution in the high frequency regime," CEMA14, 9th International Conference, 12-18, Sofia, Bulgaria, Oct. 2014. Google Scholar
22. Bourgiotis, S., A. Chrysostomou, K. Ioannidi, S. Sautbekov, and P. Frangos, "Radiation of a vertical dipole over flat and lossy ground using the spectral domain approach: Comparison of stationary phase method analytical solution with numerical integration results," Electronics and Electrical Engineering Journal, Vol. 21, No. 3, 38-41, 2015, [online], available: http://dx.doi.org/10.5755-/j01.eee.21.3.10268. Google Scholar
23. Chrysostomou, A., S. Bourgiotis, S. Sautbekov, K. Ioannidi, S. Sautbekov, and P. Frangos, "Radiation of a vertical dipole antenna over flat and lossy ground: Accurate electromagnetic field calculation using the spectral domain approach along with redefined integral representations and corresponding novel analytical solution," Electronics and Electrical Engineering Journal, Vol. 22, No. 2, 54-61, 2016. Google Scholar
24. Weinstein, L. A., The Theory of Diffraction and the Factorization Method, Golem Press, Boulder, Colorado, 1969.
25. Fock, V. A., Diffraction of Radio Waves around the Earth’s Surface, Academy of Sciences, U.S.S.R., 1946.
26. Sautbekov, S. S., "Factorization method for finite fine structures," Progress In Electromagnetic Research B, Vol. 25, 1-21, 2010.
doi:10.2528/PIERB10071801 Google Scholar