Vol. 62
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-29
Compact Multi-Band MIMO Antenna with Improved Isolation
By
Progress In Electromagnetics Research M, Vol. 62, 199-210, 2017
Abstract
Nowadays everyone needs electronic gadgets in compact size, and single device should accomplish all the tasks. A compact MIMO antenna resonating at multi-band of frequencies is proposed in the current research work. The proposed MIMO antenna consists of two elements. The edge to edge separation between the two antennas is λ0/31 and still maintains low mutual coupling levels between the two antennas. The proposed MIMO antenna resonates at 4.75 GHz, 5.89 GHz, 6.74 GHz, 8.25 GHz and 9.82 GHz. The mutual coupling is reduced by -23.78 dB at 4.75 GHz, -25.71 dB at 5.89 GHz, -29 dB at 6.74 GHz, -32.79 dB at 8.25 GHz and -21.5 dB at 9.82 GHz, respectively. The performance of the proposed MIMO system was evaluated in terms of S-parameters, Envelope Correlation Coefficient (ECC), Voltage Standing Wave Ratio (VSWR), and Radiation Pattern. The measured and simulated results are presented.
Citation
Pasumarthi Srinivasa Rao Jagadeesh Babu Kamili Avala Mallikarjuna Prasad , "Compact Multi-Band MIMO Antenna with Improved Isolation," Progress In Electromagnetics Research M, Vol. 62, 199-210, 2017.
doi:10.2528/PIERM17090201
http://www.jpier.org/PIERM/pier.php?paper=17090201
References

1. Hong, Y., J. Tak, J. Baek, B. Myeong, and J. Choi, "Design of a multiband antenna for LTE/GSM/UMTS band operation," International Journal of Antennas and Propagation, Vol. 2014, No. 7, 1187-1190, 2014.

2. Li, Q., A. P. Feresidis, M. Mavridou, and P. S. Hall, "Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 1168-1171, March 2015.
doi:10.1109/TAP.2014.2387871

3. Al-Hasan, M. J., T. A. Denidni, and A. R. Sebak, "Millimeter-wave compact EBG structure for mutual coupling reduction applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 823-828, February 2015.
doi:10.1109/TAP.2014.2381229

4. Karimian, R., A. Kesavan, M. Nedil, and T. A. Denidni, "Low mutual coupling 60 GHz MIMO antenna system with frequency selective surface wall," IEEE Antennas & Wireless Propagation Letters, Vol. 16, No. 99, 373-376, 2017.
doi:10.1109/LAWP.2016.2578179

5. Von B. M. Trindade, D., C. M¨uller, M. C. F. De Castro, and F. C. C. De Castro, "Metamaterials applied to ESPAR antenna for mutual coupling reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 430-433, 2015.
doi:10.1109/LAWP.2014.2366418

6. Li, Z., Z. Du, M. Takahashi, K. Saito, and K. Ito, "Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 473-481, February 2012.
doi:10.1109/TAP.2011.2173432

7. Farsi, S., H. Aliakbarian, D. Schreurs, B. Nauwelaers, and G. A. E. Vandenbosch, "Mutual coupling reduction between planar antennas by using a simple microstrip U-section," IEEE Antennas and Wireless Propagation Letters, Vol. 11, No. 4, 1501-1503, 2012.
doi:10.1109/LAWP.2012.2232274

8. Zhang, S. and G. F. Pedersen, "Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 166-169, 2016.
doi:10.1109/LAWP.2015.2435992

9. Zhai, G., Z. N. Chen, and X. Qing, "Mutual coupling reduction of a closely spaced four-element MIMO antenna system using discrete mushrooms," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 10, October 2016.

10. Talha, M. Y., K. J. Babu, and R. W. Aldhaheri, "Design of a compact MIMO antenna system with reduced mutual coupling," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 1, 117-124, 2016.
doi:10.1017/S1759078714001287

11. Allam, A. M. M. A. and A. M. G. Hemdan, "Novel DGS shape for mutual coupling reduction," GeMiC 2016, Bochum, Germany, March 14-16, 2016.

12. Qi, H., L. Liu, X. Yin, H. Zhao, and W. J. Kulesza, "Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 2016.

13. Xu, H.-X., S. Tang, G. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, "Multifunctional microstrip array combining a linear polarizer and focusing metasurface," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3676-3682, 2016.
doi:10.1109/TAP.2016.2565742

14. Xu, H.-X., T. Cai, Y.-Q. Zhuang, Q. Peng, G.-M. Wang, and J.-G. Liang, "Dual-mode transmissive metasurface and its applications in multibeam transmitarray," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1797-1806, 2017.
doi:10.1109/TAP.2017.2673814

15. Xu, H.-X., S. Tang, X. Ling, W. Luo, and L. Zhou, "Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking," Annalen der Physik (Berlin), 1700045, 2017.
doi:10.1002/andp.201700045

16. Xu, H.-X., S. Sun, S. Tang, S. Ma, Q. He, G.-M. Wang, T. Cai, H.-P. Li, and L. Zhou, "Dynamical control on helicity of electromagnetic waves by tunable metasurfaces," Scientific Reports, Vol. 6, 27503, 2016.
doi:10.1038/srep27503

17. Xu, H.-X., G.-M. Wang, and M.-Q. Qi, "Hilbert-shaped magnetic waveguided metamaterials for electromagnetic coupling reduction of microstrip antenna array," IEEE Transactions on Magnetics, Vol. 49, No. 4, April 2013.

18. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and H.-Y. Zeng, "Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array," Optics Express, Vol. 20, No. 20, 21970, September 24, 2012.

19. Gupta, R. K., T. Shanmuganantham, and R. Kiruthika, "A staircase hexagonal shaped microstrip patch antenna for multiband applications," International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2016.

20. Babu, K. J., R. W. Aldhaheri, M. Y. Talha, and I. S. Alruhaili, "Design of a compact two element MIMO antenna system with improved isolation," Progress In Electromagnetics Research Letters, Vol. 48, 27-32, 2014.
doi:10.2528/PIERL14070307

21. Babu, K. J., K. S. Ramakrishna, and L. P. Reddy, "A triband swastika shaped patch antenna with reduced mutual coupling for wireless mimo systems," Journal of Electronics (CHINA), Vol. 28, No. 4/5/6, November 2011.

22. Karimian, R., M. Soleimani, and S. M. Hashemi, "Tri-band four elements MIMO antenna system for WLAN and WiMAX application," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17-18, 2348-2357, December 2012.
doi:10.1080/09205071.2012.734433

23. Manteghi, M. and Y. Rahmat-Samii, "Novel compact tri-band two-element and four-element MIMO antenna designs," Antennas and Propagation Society International Symposium 2006, IEEE, 2006.

24. Li, Q., A. P. Feresidis, M. Mavridou, and P. S. Hall, "Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 1168-1171, 2015.
doi:10.1109/TAP.2014.2387871

25. Mao, C.-X., Q.-X. Chu, Y.-T. Wu, and Y.-H. Qian, "Design and investigation of closely-packed diversity UWB slot-antenna with high isolation," Progress In Electromagnetics Research C, Vol. 41, 13-25, 2013.
doi:10.2528/PIERC13032301