1. Engheta, N., Metamaterials Physics and Engineering Explorations, IEEE Press, 2006.
2. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Published by John Wiley and Sons, Inc., 2006.
3. Pendry, J. B., "Metamaterials and the control of electromagnetic fields," Conference on Coherence and Quantum Optics, OSA Technical Digest (CD), Optical Society of America,2007. Google Scholar
4. Kock, W. E., "Radio lenses," Bell Lab. Rec., Vol. 24, 177-216, 1946. Google Scholar
5. Collin, R., Field Theory of Guided Waves, McGraw Hill, USA, 1960.
6., Veselago and V. G., "The electrodynamics of substances with simultaneously negative values of E and p," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1967. Google Scholar
7. Maslovski, S. I., S. A. Tretyakov, and P. A. Belov, "Wire media with negative effective permittivity a quasi-static model," Modelmicrowave and Optical Technology and Optical Letters, Vol. 35, No. 1, p´aginas, Oct. 5, 2000. Google Scholar
8. Pendry, J. B., A. J. Holden, D. J. Ronbinson, and W. J. Stewart, "Magnetism from conductors and Enhanced Nonlinear Phenomena," IEEE Trans. on MTT, Vol. 47, 11, p´aginas, Feb. 1999. Google Scholar
9. Casey, K. F., "Electromagnetic shielding behavior of wire-mesh screens," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 3, Aug. 1988.
doi:10.1109/15.3309 Google Scholar
10. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, 1992.
11. Surhone, L. M., M. T. Timpledon, and S. F. Marseken Savitzky-Golay, Savitzky-Golay Smoothing Filter, 116 pages, VDM Publishing, Aug. 10, 2010.
12. Rahman, M. and M. A. Stuchly, "Transmission line periodic circuit representation of planar microwave photonic bandgap structures," Microwave and Optical Tech. Lett., Vol. 30, No. 1, 15-19, 2001.
doi:10.1002/mop.1207 Google Scholar
13. Lovat, G., P. Burghiognoli, and S. Celozzi, "Shielding properties of a wire medium screen," IEEE Trans. on EMC, Vol. 50, 1, paginas, Feb. 2008. Google Scholar
14. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.
15. Eleftheriades, G. V. and K. G. Balmain, Negative-Refraction Metamaterials Fundamental Principles and Applications, IEEE Press, 2005.
doi:10.1002/0471744751
16. Boggi, S., A. Kieselewsky, and W. G. Fano, "A model for the effective dielectric permittivity of Metamaterials," Proceedings of RPIC-IEEE 2015 Symposium, Oct. 2015. Google Scholar
17. Boggi, S., R. Alonso, and W. G. Fano, "Eficiencia de blindaje de nuevos materiales," Proceedings of IEEE Biennial Congress of Argentina (ARGENCON), 1-5, 2016. Google Scholar
18. Clayton, P. R., Introduction to Electromagnetic Compatibility, 2nd Ed., Wiley Interscience, Jan. 2006.
19. Trainotti, V., W. G. Fano, and L. A. Dorado, Ingenieria Electromagnetica Tomo I, Editorial Nueva Libreria, Buenos Aires, Arg., 2003.
20. Jordan, E. J., Electromagnetic Waves and Radiating Systems, Wiley, 1950.
21. Trainotti, V., W. G. Fano, and L. A. Dorado, Ingenieria Electromagnetica Tomo II, Editorial Nueva Libreria, Buenos Aires, Arg., 2005.
22. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2011.
23. Schelkunoff, S. A., Electromagnetics Wave, Van Nostrand Company, USA, Apr. 1943.
24. Balanis, C. A., Antenna Theory: Annalysis and Design, Wiley, 2005.
25. IEEE Standard Method for Measuring the effectiveness, IEEE-Std-299-1997.
26. Wilson, P. F., "Techniques for measuring the electromagnetic shielding effectiveness of materials: Part I: Far field source simulation," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 3, Aug. 1988. Google Scholar