Vol. 64
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-01-17
Meissner Effect in Classical Physics
By
Progress In Electromagnetics Research M, Vol. 64, 1-7, 2018
Abstract
The Meissner effect is explored based on the acceleration-dependent component of the Weber force. According to the Maxwell theory, a steady circulating current does not produce any dynamics on external resting charges; however, according to the Weber theory, the charges of the circulating current exhibit a centripetal acceleration, which affects the external charges at rest. It is demonstrated that the current generated in this manner can explain the Meissner effect in classical physics.
Citation
Kjell Ake Prytz , "Meissner Effect in Classical Physics," Progress In Electromagnetics Research M, Vol. 64, 1-7, 2018.
doi:10.2528/PIERM17092702
http://www.jpier.org/PIERM/pier.php?paper=17092702
References

1. Essen, H. and M. Fiolhais, "Meissner effect, diamagnetism, and classical physics: A review," Am. J. Phys., Vol. 80, 164, 2012.
doi:10.1119/1.3662027

2. Szeftel, J., N. Sandeau, and A. Khater, "Study of the skin effect in superconducting materials," Phys. Lett. A, Vol. 381, 1525, 2017.
doi:10.1016/j.physleta.2017.02.051

3. De Gennes, P. G., Superconductivity of Metals and Alloys, 47, Perseus books, Reading, Massachusetts, 1999.

4. Nikulov, A., "The Meissner effect puzzle and the quantum force in superconductor," Physics Letters A, Vol. 376, 3392, 2012.
doi:10.1016/j.physleta.2012.09.028

5. Weber, W., Elektrodynamische Massbestimmungen uber ein allgemeines Grundgesetz der elektrischen Wirkung, Vol. 3, 25, Werke, Julius Springer, 1893.

6. Weber, W., "Elektrodynamische massbestimmungen uber ein allgemeines Grundgesetz derelek-trischen Wirkung," Ann. Phys.-Berlin, Vol. 73, 193, 1848.

7. Weber, W., "Determinations of electrodynamic measure: concerning a universal law of electrical action," 21st Century Science and Technology, English translation by S. P. Johnson, edited by L. Hecht and A. K. T. Assis, 2007, Available in PDF at: http://www.21stcenturysciencetech.com/translation.html.

8. Weber, W., "On the measurement of electro-dynamic forces," Scientific Memoirs, R. Taylor, Ed., Vol. 5, 489-529, Johnson Reprint Corporation, New York, 1966.

9. Moon, P. and D. Spencer, "Interpretation of the ampre experiments," Journal of Franklin Institute, Vol. 257, 203, 1954.
doi:10.1016/0016-0032(54)90578-5

10. Moon, P. and D. Spencer, "A postulational approach to electromagnetism," Journal of Franklin Institute, Vol. 259, 293, 1955.
doi:10.1016/0016-0032(55)90638-4

11. Moon, P. and D. Spencer, "On electromagnetic induction," Journal of Franklin Institute, Vol. 260, 213, 1955.
doi:10.1016/0016-0032(55)90735-3

12. Moon, P. and D. Spencer, "Electromagnetism without magnetism: An historical sketch," Am. Journal of Physics, Vol. 22, 120, 1954.
doi:10.1119/1.1933645

13. Assis, A. K. T., Weber’s Electrodynamics, Kluwer Academic Publ., 1994.
doi:10.1007/978-94-017-3670-1

14. Assis, A. K. T. and M. Tajmar, "Superconductivity with Weber’s electrodynamics: The London moment and the meissner effect," Annales de la Fondation Louis de Broglie, Vol. 42, No. 2, 2017.

15. Meissner, W. and R. Ochsenfeld, "Ein neuer Effekt bei eintritt der Supraleitfahigkeit," Naturwissen, Vol. 21, 787, 1933.
doi:10.1007/BF01504252

16. Arkadiev, V., "A floating magnet," Nature, Vol. 160, 330, 1947.
doi:10.1038/160330a0

17. Crooks, M. J., "Floating magnets and the meissner effect," Am. J. Phys., Vol. 39, 113, 1971.
doi:10.1119/1.1976729

18. London, H. and F. London, "The electromagnetic equations of the supraconductor," Proc. Roy. Soc., Vol. A149, 71, London, 1935; ``Supraleitung und diamagnetismus,'' Physica, Vol. 2, 341, 1935.

19. Bardeen, J., L. N. Cooper, and J. R. Schrieffer, "Theory of superconductivity," Phys. Rev., Vol. 108, 1175, 1957.
doi:10.1103/PhysRev.108.1175

20. Neumann, F., "Allgemeine gesetz der inducierten electrischen strome," Phys. Abh. Akad. Wiss., 1, Berlin, 1845.

21. Prytz, K., Electrodynamics: The Field Free Approach, Chapter 11, Springer Verlag, 2015.

22. Smith, R. T., F. P. M. Jjunju, and S. Maher, "Evaluation of electron beam deflections across a solenoid using Weber-Ritz and Maxwell-Lorentz electrodynamics," Progress In Electromagnetics Research, Vol. 151, 83, 2015.
doi:10.2528/PIER15021106

23. Einstein, A., The Meaning of Relativity, 1st Ed., Methuen & Co Ltd., 1922; 6th Edition, Chapman and Hall, 1956.

24. Maxwell, J. C., A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, 1873.

25. Signore, L. R., "About the gravity paradox in an expanding universe," Nuovo Ciment. B, Vol. 111, 1087, 1996.
doi:10.1007/BF02743220

26. Sultana, J. and D. Kazanas, "The problem of inertia in Friedman universes," Int. J. Mod Phys. D, Vol. 20, 1205, 2011.
doi:10.1142/S0218271811019384

27. Prytz, K., "Sources of inertia in an expanding universe," Open Physics, Vol. 13, 130, 2015.

28. Sciama, D. W., "On the origin of inertia," Monthly Notices of the Royal Astronomical Society, Vol. 113, 34, 1953.
doi:10.1093/mnras/113.1.34

29. Page, L., "Derivation of the fundamental relations of electrodynamics from those of electrostatics," Am J. Sci., Vol. 34, 57, 1912.
doi:10.2475/ajs.s4-34.199.57