1. Walter, M., D. Shutin, and U.-C. Fiebig, "Delay-dependent doppler probability density functions for vehicle-to-vehicle scatter channels," IEEE Trans. Antennas and Propag., Vol. 62, No. 4, 2238-2249, Apr. 2014.
doi:10.1109/TAP.2014.2301432 Google Scholar
2. Yuan, Y., C. X. Wang, X. Cheng, B. Ai, and D. I. Laurenson, "Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels," IEEE Trans. Wireless Commun., Vol. 13, No. 1, 298-309, Jan. 2014.
doi:10.1109/TWC.2013.120313.130434 Google Scholar
3. Ndzi, D. L., K. Stuart, S. Toautachone, B. Vuksanovic, and D. A. Sanders, "Wideband sounder for dynamic and static wireless channel characterisation: Urban picocell channel model," Progress In Electromagnetics Research, Vol. 113, 285-312, 2011.
doi:10.2528/PIER10122905 Google Scholar
4. Chelli, A. and M. Pätzold, "The impact of fixed and moving scatterers on the statistics of MIMO vehicle-to-vehicle channels," Proc. IEEE VTC Spring, 1-6, Barcelona, Spain, Apr. 2009. Google Scholar
5. Chelli, A. and M. Pätzold, "A dynamic MIMO vehicle-to-vehicle channel model derived from the geometrical street model," Proc. IEEE VTC Fall, 1-6, San Francisco, CA, USA, Sep. 2011. Google Scholar
6. Borhani, A. and M. Pätzold, "Modeling of vehicle-to-vehicle channels in the presence of moving scatterers," Proc. 76th IEEE VTC-Fall, 1-5, Quebec City, QC, Canada, Sep. 2012. Google Scholar
7. Borhani, A. and M. Pätzold, "Correlation and spectral properties of vehicle-to-vehicle channels in the presence of moving scatterers," IEEE Trans. Veh. Technol., Vol. 62, No. 9, 4228-4239, Nov. 2013.
doi:10.1109/TVT.2013.2280674 Google Scholar
8. Soltani, M. D., M. Alimadadi, Y. Seyedi, and H. Amindavar, "Modeling of Doppler spectrum in V2V urban canyon oncoming environment," Proc. IEEE Int. Workshop IST, 1155-1160, Tehran, Iran, Sep. 2014. Google Scholar
9. Soltani, M. D., M. Alimadadi, and A. Mohammadi, "Modeling of mobile scatterer clusters for Doppler spectrum in wideband vehicle-to-vehicle communication channels," IEEE Commun. Lett., Vol. 18, No. 4, 628-631, Apr. 2014.
doi:10.1109/LCOMM.2014.030614.132856 Google Scholar
10. Zajić, A. G., "Impact of moving scatterers on vehicle-to-vehicle narrow-band channel characteristics," IEEE Trans. Veh. Technol., Vol. 63, No. 7, 3094-3106, Sep. 2014.
doi:10.1109/TVT.2014.2299239 Google Scholar
11. Zajić, A. G., "Modeling impact of moving scatterers on Doppler spectrum in wideband vehicle-to-vehicle channels," Proc. Eur. Conf. Antennas Propag., 1-5, Lisbon, May 2015. Google Scholar
12. Liang, X., X. Zhao, S. Li, Q. Wang, and J. Li, "A dynamic geometry-based scattering model for street vehicle-to-vehicle wideband MIMO channels," Proc. IEEE 26th Annual International PIMRC, 2239-2243, Hong Kong, Sep. 2015. Google Scholar
13. Zhao, X., X. Liang, S. Li, and B. Ai, "Two-cylinder and multi-ring GBSSM for realizing and modeling of vehicle-to-vehicle wideband MIMO channels," IEEE Trans. Intell. Trans. Syst., Vol. 17, No. 10, 2787-2799, Oct. 2016.
doi:10.1109/TITS.2016.2526652 Google Scholar
14. Fuhl, J., J.-P. Rossi, and E. Bonek, "High-resolution 3-D direction-ofarrival determination for urban mobile radio," IEEE Trans. Antennas Propag., Vol. 45, No. 4, 672-682, Apr. 1997.
doi:10.1109/8.564093 Google Scholar
15. Kalliola, K., K. Sulonen, H. Laitinen, O. Kivelas, J. Krogerus, and P. Vainikainen, "Angular power distribution and mean effective gain of mobile antenna in different propagation environments," IEEE Trans. Veh. Technol., Vol. 51, No. 5, 823-838, Dec. 2002.
doi:10.1109/TVT.2002.800639 Google Scholar
16. Karadimas, P. and D. Matolak, "Generic stochastic modeling of vehicle-to-vehicle wireless channels," Vehicular Communications, Vol. 1, No. 4, 153-167, Aug. 2014.
doi:10.1016/j.vehcom.2014.08.001 Google Scholar
17. Du, D., X. Zeng, X. Jian, L. Miao, and H. Wang, "Three-dimensional vehicle-to-vehicle channel modeling with multiple moving scatterers," Mobile Information Systems, Vol. 2017, 1-14, Jul. 2017. Google Scholar
18. Dahech, W., M. Pätzold, and N. Youssef, "A dynamic mobile-to-mobile multipath fading channel model taking account of velocity variations of the mobile stations," Proc. IEEE EuCAP, 1-4, Lisbon, Apr. 2015. Google Scholar
19. Zajić, A. G., G. Stüber, T. Pratt, and S. Nguyen, "Wideband MIMO mobile-to-mobile channels: Geometry-based statistical modeling with experimental verification," IEEE Trans. Veh. Technol., Vol. 58, No. 2, 517-534, Feb. 2009.
doi:10.1109/TVT.2008.928001 Google Scholar