Vol. 64
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-05
Investigation of the Effects of Different Magnetization Patterns on the Performance of Series Hybrid Excitation Synchronous Machines
By
Progress In Electromagnetics Research M, Vol. 64, 109-121, 2018
Abstract
In this paper, the effects of magnetization patterns on the performance of series hybrid excitation synchronous machines (SHESMs) are investigated. SHESMs have three magnetic field sources: armature winding currents, permanent magnets and auxiliary winding current. To initiate the investigation, the magnetic field distributions produced by these three sources are obtained. Using the magnetic field distributions, the machine is analyzed under no-load and on-load conditions. Furthermore, the operational indices, such as inductance, torque, and unbalance magnetic force, are calculated. Various magnetization patterns are considered to investigate their influences on the performance of the machine.
Citation
Alireza Hoseinpour Mohamed Mardaneh Akbar Rahideh , "Investigation of the Effects of Different Magnetization Patterns on the Performance of Series Hybrid Excitation Synchronous Machines," Progress In Electromagnetics Research M, Vol. 64, 109-121, 2018.
doi:10.2528/PIERM17102006
http://www.jpier.org/PIERM/pier.php?paper=17102006
References

1. Knypnski, L., L. Nowak, and A. Demenko, "Optimization of the synchronous motor with hybrid permanent magnet excitation system," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 34, No. 2, 448-455, 2015.
doi:10.1108/COMPEL-08-2014-0216

2. Amara, Y., J. Lucidarme, M. Gabsi, M. Lécrivain, A. H. Ben Ahmed, and A. D. Akémakou, "A new topology of hybrid excitation synchronous machine," IEEE Transactions on Industrial Application, Vol. 37, No. 5, 1273-1281, Sep./Oct. 2001.
doi:10.1109/28.952502

3. Amara, Y., S. Hlioui, R. Belfkira, G. Barakat, and M. Gabsi, "Comparison of open circuit flux control capability of a series double excitation machine and a parallel double excitation machine," IEEE Transactions on Vehicular Technology, Vol. 60, No. 9, Nov. 2011.

4. Wang, Y. and Z. Deng, "Hybrid excitation topologies and control strategies of stator permanent magnet machines for DC power system," IEEE Transactions on Industrial Electronics, Vol. 59, No. 12, 2012.

5. Geng, W., Z. Zhang, K. Jiang, and Y. Yan, "A new parallel hybrid excitation machine: Permanent-magnet/variable-reluctance machine with bidirectional field-regulating capability," IEEE Transactions on Industrial Electronics, Vol. 62, No. 3, Mar. 2015.
doi:10.1109/TIE.2014.2348936

6. Kamiev, K., J. Pyrhönen, J. Nerg, V. Zaboin, and J. Tapia, "Modeling and testing of an armature-reaction-compensated (PM) synchronous generator," IEEE Transactions on Energy Conversion, Vol. 28, No. 4, Dec. 2013.
doi:10.1109/TEC.2013.2286836

7. Zhu, X., M. Cheng, W. Hua, J. Zhang, and W. Zhao, "Design and analysis of a new hybrid excited doubly salient machine capable of field control," Conference. Rec. IEEE IAS Annu. Meeting, Vol. 5, 2382-2389, Tampa, FL, USA, 2006.

8. Hua, W., M. Cheng, and G. Zhang, "A novel hybrid excitation flux switching motor for hybrid vehicles," IEEE Transactions on Magnetics, Vol. 45, No. 10, 4728-4731, Oct. 2009.
doi:10.1109/TMAG.2009.2022497

9. Owen, R. L., Z. Q. Zhu, and G. W. Jewell, "Hybrid-excited flux-switching permanent-magnet machines with iron flux bridges," IEEE Transactions on Magnetics, Vol. 46, No. 6, 1726-1729, Jun. 2010.
doi:10.1109/TMAG.2010.2040591

10. Zhang, Z., S. Ma, J. Dai, and Y. Yan, "Investigation of hybrid excitation synchronous machines with axial auxiliary airgaps and nonuniform airgaps," IEEE Transactions on Industrial Application, Vol. 50, No. 3, May/Jun. 2014.

11. Luo, X. and T. A. Lipo, "A synchronous/permanent magnet hybrid AC machine," IEEE Transactions on Energy Conversion, Vol. 15, No. 2, 203-210, Jun. 2000.
doi:10.1109/60.867001

12. Kim, S. I., J. Cho, S. Park, T. Park, and S. Lim, "Characteristics comparison of a conventional and modified spoke-type ferrite magnet motor for traction drives of low-speed electric vehicles," IEEE Transactions on Industrial Application, Vol. 49, No. 6, 2516-2523, 2013.
doi:10.1109/TIA.2013.2264651

13. Kamiev, K., J. Nerg, J. Pyrhönen, V. Zaboin, and J. Tapia, "Feasibility of an armature-reaction-compensated permanent-magnet synchronous generator in island operation," IEEE Transactions on Industrial Electronic, Vol. 61, No. 9, Sep. 2014.
doi:10.1109/TIE.2013.2289871

14. Bali, H., Y. Amara, G. Barakat, R. Ibtiouen, and M. Gabsi, "Analytical modeling of open circuit magnetic field in wound field and series double excitation synchronous machines," IEEE Transactions on Magnetics, Vol. 46, No. 10, Oct. 2010.

15. Rahideh, A., M.Mardaneh, and T. Korakianitis, "Analytical 2-D calculations of torque, inductance, and Back-EMF for brushless slotless machines with surface inset magnets," IEEE Transactions on Magnetics, Vol. 49, No. 8, 1-12, Aug. 2013.
doi:10.1109/TMAG.2013.2242087

16. Teymoori, S., A. Rahideh, H. Moayed-Jahromi, and M. Mardaneh, "2-D analytical magnetic field prediction for consequent-pole permanent magnet synchronous machines," IEEE Transactions on Magnetics, Vol. 52, No. 6, 1-14, Jun. 2016.
doi:10.1109/TMAG.2016.2521834