Vol. 64
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-02
Design of a Novel UWB Microstrip Antenna with SIW Feed
By
Progress In Electromagnetics Research M, Vol. 64, 87-97, 2018
Abstract
Antenna miniaturization, which is a requirement of modern wireless communication systems, is usually concomitant with the reduction of impedance bandwidth. On the other hand, small antennas should also possess stable radiation patterns across a broad frequency band, such as in UWB systems. In this paper, we propose a UWB antenna structure with a novel feeding system composed of an open cavity resonator. It has a wide relative bandwidth (of about 120%) particularly at the lower frequency limits. The variation of radiation pattern across its operating bandwidth is also negligible. The proposed antenna with the novel feed system is smaller and has a wider frequency bandwidth than other available UWB antennas in the literature. Furthermore, another antenna is proposed, which has a feeding system composed of a surface integrated resonator cavity, fabricated on a two-layer microstrip structure. It has achieved better miniaturization and bandwidth, albeit somewhat lower gain. Three prototype models of the proposed antennas are fabricated and measured, of which the frequency response is in excellent agreement with computer simulation results.
Citation
Abbas Ebrahimi Hamid Khodabakhshi , "Design of a Novel UWB Microstrip Antenna with SIW Feed," Progress In Electromagnetics Research M, Vol. 64, 87-97, 2018.
doi:10.2528/PIERM17102701
http://www.jpier.org/PIERM/pier.php?paper=17102701
References

1. Skrivervik, A. K., J.-F. Zurcher, O. Staub, and J. R. Mosig, "PCS antenna design: The challenge of miniaturization," IEEE Antennas and Propagation Magazine, Vol. 43, 12-27, Aug. 2001.
doi:10.1109/74.951556

2. Wei, L.-A., "Applications of ultra wideband,", M.S., The University of Texas at Arlington, Dec. 2006.

3. Kula, J. S., D. Psychoudakis, W.-J. Liao, C.-C. Chen, J. L. Volakis, and J. W. Halloran, "Patch-antenna miniaturization using recently available ceramic substrates," IEEE Antennas and Propagation Mag., Vol. 48, No. 6, Dec. 2006.
doi:10.1109/MAP.2006.323335

4. Chen, D. and C.-H. Cheng, "A novel compact ultra-wideband (UWB) wide slot antenna with via holes," Progress In Electromagnetic Research, Vol. 94, 343-349, 2009.
doi:10.2528/PIER09062306

5. Schaubert, D. H., D. M. Pozar, and A. Adrian, "Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories and experiment," IEEE Trans. Antennas Propag., Vol. 37, 677-682, Jun. 1989.
doi:10.1109/8.29353

6. Pues, H. F. and A. R. Van De Capelle, "An impedance-matching technique for increasing the bandwidth of microstrip antennas," IEEE Trans. Antennas Propag., Vol. 37, No. 11, 1345-1354, Nov. 1989.
doi:10.1109/8.43553

7. Kumar, G. and K. C. Gupta, "Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges," IEEE Trans. Antennas Propag., Vol. 32, 1375-1379, Dec. 1984.
doi:10.1109/TAP.1984.1143264

8. Wi, S.-H., J.-M. Kim, T.-H. Yoo, H.-J. Lee, J.-Y. Park, J.-G. Yook, and H.-K. Park, "Bow-tie-shaped meander slot antenna for 5 GHz application," Proc. IEEE Int. Symp. Antenna and Propagation, Vol. 2, 456-459, Jun. 2002.

9. Li, Y., W. Hong, G. Hua, J. Chen, K. Wu, and T. J. Cui, "Simulation and experiment on SIW slot array antennas," IEEE Microwave Wireless Compon. Lett., Vol. 14, No. 9, 137-139, Sep. 2004.

10. Hong, W., B. Liu, G. Q. Luo, Q. H. Lai, J. F. Xu, Z. C. Hao, F. F. He, and X. X. Yin, "Integrated microwave and millimeter wave antennas based on SIW and HMSIW technology," IEEE Microw. Antennas and Propagation, 69-72, 2007.

11. Zhang, X.-C., Z.-Y. Yu, and J. Xu, "Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators (CSRRS)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201

12. Sotoodeh, Z., B. Biglarbegian, and F. H. Kashani, "A novel bandpass waveguide filter structure on SIW technology," Progress In Electromagnetics Research Letters, Vol. 2, 141-148, 2008.
doi:10.2528/PIERL08010204

13. Xu, H., J. Lei, C. Cui, and L. Yang, "UWB dual-polarized Vivaldi antenna with high gain," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 3, No. 1, 5-8, May 2012.

14. Chiu, C. Y., H. Wong, and C. H. Chan, "Study of small wideband folded-patch-feed antennas," IET Microw. Antennas and Propagation, Vol. 1, No. 2, 501-505, 2007.
doi:10.1049/iet-map:20050255

15. Naser-Moghadasi, M., A. Dadgarpour, F. Jolani, and B. S. Virdee, "Ultra wideband patch antenna with a novel folded-patch technique," IET Microw. Antennas and Propagation, Vol. 3, No. 1, 164-170, 2009.
doi:10.1049/iet-map:20080013

16. Oraizi, H. and S. Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals," IEEE Antennas and Wireless Propagation Letters, Vol. 10, No. 1, 67-70, Jan. 28, 2011.

17. Madhav, B. T. P., V. G. K. M. Pisipati, H. Khan, and P. V. Datta Prasad, "Shorting plate planar inverted folded antenna on LC substrate for bluetooth applications," Journal of Engineering Science and Technology Review, 42-45, Aug. 2012.
doi:10.25103/jestr.052.08

18. Guha, D. and Y. M. M. Antar, Microstrip and Printed Antennas, Ch. 10, John Wiley & Sons Ltd., 2011.

19. Abbas, S. M., Y. Ranga, A. K. Verma, and K. P. Esselle, "A simple ultra wideband printed monopole antenna with high band rejection and wide radiation patterns," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4816-4820, Sept. 2014.
doi:10.1109/TAP.2014.2330585

20. Gautam, A. K., S. Yadav, and B. K. Kanaujia, "A CPW-fed compact UWB microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 151-154, Jan. 2013.
doi:10.1109/LAWP.2013.2244055