1. Larsson, A., "Advances in VCSELs for communication and sensing," IEEE J. Sel. Topics Quantum Electron., Vol. 17, No. 6, 1552-1567, 2011.
doi:10.1109/JSTQE.2011.2119469 Google Scholar
2. Towe, E., R. F. Leheny, and A. Yang, "A historical perspective of the development of the vertical-cavity surface-emitting laser," IEEE J. Sel. Topics Quantum Electron., Vol. 6, No. 6, 1458-1464, 2000.
doi:10.1109/2944.902201 Google Scholar
3. Mukai, K., Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3 μm CW lasing characteristics of self-assembled InGaAs-GaAs quantum dots," IEEE J. Quantum Electron., Vol. 36, 472-478, Apr. 2000.
doi:10.1109/3.831025 Google Scholar
4. Zope, U., E. P. Samuel, M. P. Bhole, and D. S. Patil, "Optical field distribution in ZnO/MgZnO quantum dot nanostructure at 375-nm wavelength," Physica E, Vol. 42, 38-42, 2009.
doi:10.1016/j.physe.2009.08.012 Google Scholar
5. Ustinov, V. M., Quantum Dot Lasers, Oxford Univ. Press, 2007.
6. Ding, Y., W. J. Fan, D. W. Xu, L. J. Zhao, Y. Liu, and N. H. Zhu, "Fabrication and characterization of 1.3-μm InAs quantum-dot VCSELs and monolithic VCSEL arrays," Proc. SPIE-OSA-IEEE, Vol. 7631, 763102-1-763102-7, 2010. Google Scholar
7. Yu, H. C., J. S. Wang, Y. K. Su, S. J. Chang, F. I. Lai, Y. H. Chang, H. C. Kuo, C. P. Sung, H. P. D. Yang, K. F. Lin, J. M. Wang, J. Y. Chi, R. S. Hsiao, and S. Mikhrin, "1.3 μm InAs-InGaAs quantum-dot vertical-cavity surface-emitting laser with fully doped DBRs grown by MBE," IEEE Photonics Technology Letters, Vol. 18, No. 2, 418-420, 2006.
doi:10.1109/LPT.2005.863166 Google Scholar
8. Tong, C. Z., D. W. Xu, S. F. Yoon, Y. Ding, and W. J. Fan, "Temperature characteristics of 1.3-μm p-doped InAs-GaAs quantum-dot vertical cavity surface-emitting lasers," IEEE J. Sel. Topics Quantum Electron., Vol. 15, No. 3, 743-748, 2009.
doi:10.1109/JSTQE.2008.2010235 Google Scholar
9. Xu, D. W., S. F. Yoon, and C. Z. Tong, "Self-consistent analysis of confinement and output power in 1.3 μm InAs-GaAs quantum-dot VCSELs," IEEE J. Quantum Electron., Vol. 44, No. 9, 879-885, 2008.
doi:10.1109/JQE.2008.925136 Google Scholar
10. Abbaspour, H., V. Ahmadi, and M. H. Yavari, "Analysis of QD VCSEL dynamic characteristics considering homogeneous and inhomogeneous broadening," IEEE J. Sel. Topics Quantum Electron., Vol. 17, No. 5, 1327-1333, 2011.
doi:10.1109/JSTQE.2011.2107570 Google Scholar
11. Kim, J. E., E. Malić, M. Richter, A. Wilms, and A. Knorr, "Maxwell-Bloch equation approach for describing the microscopic dynamics of quantum-dot surface-emitting structures," IEEE J. Quantum Electron., Vol. 46, No. 7, 1115-1126, 2010.
doi:10.1109/JQE.2010.2043923 Google Scholar
12. Piskorski, L., M. Wasiak, R. Sarzala, and W. Nakwaski, "Structure optimisation of modern GaAs-based InGaAs/GaAs quantum-dot VCSELs for optical fibre communication," Opto-Electronics Review, Vol. 17, No. 3, 217-224, 2009.
doi:10.2478/s11772-008-0067-3 Google Scholar
13. Yu, S. F., "Dynamic behavior of vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 32, No. 7, 1168-1179, 1996.
doi:10.1109/3.517017 Google Scholar
14. Rossetti, M., P. Bardella, and I. Montrosset, "Time-domain travelling-wave model for quantum dot passively mode-locked lasers," IEEE Journal of Quantum Electronics, Vol. 47, No. 2, 139-150, 2011.
doi:10.1109/JQE.2010.2055550 Google Scholar
15. Gioannini, M. and M. Rossetti, "Time-domain traveling wave model of quantum dot DFB lasers," IEEE J. Sel. Topics Quantum Electron., Vol. 17, No. 5, 1318-1326, 2011.
doi:10.1109/JSTQE.2011.2128857 Google Scholar
16. Michalzik, R., "Simple understanding of waveguiding in oxidized VCSELs," Annu. Rep. 1, 19-23, Dept. Optoelectron., Univ. Ulm, Ulm, Germany, 1995. Google Scholar
17. Sugawara, M., Self-assembled InGaAs/GaAs Quantum Dots: Semiconductors and Semimetals, Vol. 60, Academic Press, 1999.
18. Banihashemi, M. and V. Ahmadi, "Dynamic characteristics of photonic crystal quantum dot lasers," Applied Optics, Vol. 53, No. 12, 2595, 2014.
doi:10.1364/AO.53.002595 Google Scholar
19. Tansu, N. and L. J. Mawst, "Current injection efficiency of InGaAsN quantum-well lasers," Journal of Applied Physics, Vol. 97, No. 5, 054502, 2005.
doi:10.1063/1.1852697 Google Scholar
20. Kim, J., C. Meuer, D. Bimberg, and G. Eisenstein, "Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 46, No. 11, 1670-1680, 2010.
doi:10.1109/JQE.2010.2058793 Google Scholar
21. Tong, C., S. Yoon, C. Ngo, C. Liu, and W. Loke, "Rate equations for 1.3-μm dots-under-a-well and dots-in-a-well self-assembled InAs-GaAs quantum-dot lasers," IEEE Journal of Quantum Electronics, Vol. 42, No. 11, 1175-1183, 2006.
doi:10.1109/JQE.2006.883471 Google Scholar
22. Li, X., "Distributed feedback lasers: Quasi-3D static and dynamic model," Optoelectronic Devices. Advanced Simulation and Analysis, 87-119, J. Piprek (ed.), Springer, Berlin, 2005. Google Scholar
23. Mulet, J. and S. Balle, "Mode-locking dynamics in electrically driven vertical-external-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 41, No. 9, 1148-1156, 2005.
doi:10.1109/JQE.2005.853355 Google Scholar
24. Yu, S. F., Analysis and Design of Vertical Cavity Surface Emitting Lasers, John Wiley & Sons, 2003.
doi:10.1002/0471723789
25. Agrawal, G. P. and N. K. Dutta, Semiconductor Lasers, 2nd Ed., Van Nostrand, 1993.
26. Yu, S. F., "An improved time-domain traveling-wave model for vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 34, No. 10, 1938-1948, 1998.
doi:10.1109/3.720230 Google Scholar
27. Xu, T., M. Rossetti, P. Bardella, and I. Montrosset, "Simulation and analysis of dynamic regimes involving ground and excited state transitions in quantum dot passively mode-locked lasers," IEEE Journal of Quantum Electronics, Vol. 48, No. 9, 1193-1202, 2012.
doi:10.1109/JQE.2012.2206372 Google Scholar
28. Berg, T. W. and J. Mørk, "Quantum dot amplifiers with high output power and low noise," Applied Physics Letters, Vol. 82, No. 18, 3083-3085, 2003.
doi:10.1063/1.1571226 Google Scholar
29. Zhao, Y.-G. and J. Mcinerney, "Transient temperature response of vertical-cavity surface-emitting semiconductor lasers," IEEE Journal of Quantum Electronics, Vol. 31, No. 9, 1668-1673, 1995.
doi:10.1109/3.406381 Google Scholar
30. Li, W., X. Li, and W.-P. Huang, "A traveling-wave model of laser diodes with consideration for thermal effects," Optical and Quantum Electronics, Vol. 36, No. 8, 709-724, 2004.
doi:10.1023/B:OQEL.0000039613.03840.64 Google Scholar
31. Nakwaski, W. and M. Osinski, "Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional arrays," Electronics Letters, Vol. 28, No. 6, 572-574, 1992.
doi:10.1049/el:19920361 Google Scholar