1. Brena, A., L. Lazzari, M. Pedeferri, and M. Ormellese, "Cathodic protection condition in the presence of AC interference," La Metallurgica Italiana, Vol. 6, 29-34, 2014. Google Scholar
2. Christoforidis, G. C., D. P. Labridis, and P. S. Dokopoulos, "Inductive interference on pipelines buried in multilayer soil due to magnetic fields from nearby faulted power lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 2, 254-262, 2005.
doi:10.1109/TEMC.2005.847399 Google Scholar
3. Satsios, K. J., D. P. Labridis, and P. S. Dokopoulos, "The influence of nonhomogeneous earth on the inductive interference caused to telecommunication cables by nearby AC electric traction lines," IEEE Transactions on Power Delivery, Vol. 15, No. 3, 1016-1021, 2000.
doi:10.1109/61.871368 Google Scholar
4. Qi, L., H. Yuan, Y. Wu, and X. Cui, "Calculation of overvoltage on nearby underground metal pipeline due to the lightning strike on UHV AC transmission line tower," Electric Power Systems Research, Vol. 94, 54-63, 2013.
doi:10.1016/j.epsr.2012.06.011 Google Scholar
5. Ponnle, A. A., K. B. Adedeji, B. T. Abe, and A. A. Jimoh, "Planar magnetic field distribution underneath two-circuit linear configured power lines in various phase arrangement," Proceedings of the 12th IEEE AFRICON Conference, 777-781, Ethiopia, Sep. 14–17, 2015. Google Scholar
6. Ponnle, A. A., K. B. Adedeji, B. T. Abe, and A. A. Jimoh, "Variation in phase shift of multi-circuits HVTLs phase conductor arrangements on the induced voltage on buried pipeline: A theoretical study," Progress In Electromagnetics Research B, Vol. 69, 75-86, 2016.
doi:10.2528/PIERB16062308 Google Scholar
7. Ponnle, A. A., K. B. Adedeji, B. T. Abe, and A. A. Jimoh, "Variation in phase shift of phase arrangements on magnetic field underneath overhead double-circuit HVTLs: Field distribution and polarization study," Progress In Electromagnetics Research M, Vol. 56, 157-167, 2017.
doi:10.2528/PIERM16110304 Google Scholar
8. Adedeji, K. B., A. A. Ponnle, B. T. Abe, and A. A. Jimoh, "Analysis of the induced voltage on buried pipeline in the vicinity of high AC voltage overhead transmission lines," Proceedings of the 23rd Southern African Universities Power Engineering Conference, 7-12, Johannesburg, Jan. 28–30, 2015. Google Scholar
9. Australian/New Zealand Standard, T.M "Electric hazards on metallic pipelines," Standards Australia, 4853, AS/NZS, 2000. Google Scholar
10. Adedeji, K. B., B. T. Abe, and A. A. Jimoh, "Low frequency induction simulation of power transmission lines and pipelines: A comparative study," Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering and Computer Science, 265-270, San Francisco, USA, Oct. 25–27, 2017. Google Scholar
11. Southey, R., F. Dawalibi, and W. Vukonich, "Recent advances in the mitigation of AC voltages occurring in pipelines located close to electric transmission lines," IEEE Transactions on Power Delivery, Vol. 9, No. 2, 1090-1097, 1994.
doi:10.1109/61.296294 Google Scholar
12. Tachick, H., "AC mitigation using shield wires and solid-state decoupling devices," Materials Performance, Vol. 40, No. 8, 24-27, 2001. Google Scholar
13. Gregoor, R., A. Pourbaix, and P. Carnentiers, "Detection of AC corrosion," CEOCOR Congress, Paper No. 2, 1–14, Biarritz, France, Oct. 2–5, 2001. Google Scholar
14. Markovic, D., V. Smith, and S. Perera, "Evaluation of gradient control wire and insulating joints as methods of mitigating induced voltages in gas pipelines," Proceedings of the Australasian Universities Power Engineering Conference, 2001-Hobart, Australia, Sep. 2005, 2006, 2005. Google Scholar
15. Shwehdi, M. and B. Al-qahtani, "Cost effective mitigation study of electromagnetic interference by power lines on neighbouring gas pipeline," CIGRE C4 Colloquium on Lightning and Power System, 11-17, Kuala Lumpur, May 16–19, 2010. Google Scholar
16. Adedeji, K. B., B. T. Abe, Y. Hamam, A. M. Abu-Mahfouz, T. H. Shabangu, and A. A. Jimoh, "Pipeline grounding condition: A control of pipe-to-soil potential for ac interference induced corrosion reduction," Proceedings of the 25th Southern African Universities Power Engineering Conference, 577-582, Stellenbosch, South Africa, Jan. 30–Feb. 1, 2017. Google Scholar
17. Ouadah, M., O. Touhami, and R. Ibtiouen, "Diagnosis of the AC current densities effect on the cathodic protection performance of the steel ×70 for a buried pipeline due to electromagnetic interference caused by HVPTL," Progress In Electromagnetics Research M, Vol. 45, 163-171, 2016.
doi:10.2528/PIERM15101103 Google Scholar
18. Ouadah, M., O. Touhami, and R. Ibtiouen, "Diagnosis of AC corrosion on the buried pipeline due to the high voltage power line," Journal of Electrical Engineering, Vol. 16, 76-83, 2016. Google Scholar
19. Beavers, J. A. and N. G. Thompson, "External corrosion of oil and natural gas pipelines," ASM Handbook on Corrosion: Environments and Industries, Vol. 13C, 1016-1025, 2006. Google Scholar
20. Xu, L., X. Su, and Y. Cheng, "Effect of alternating current on cathodic protection on pipelines," Corrosion Science, Vol. 66, 263-268, 2013.
doi:10.1016/j.corsci.2012.09.028 Google Scholar
21. CEN/TS12954 "Cathodic protection of buried or immersed metallic structures: general principles and application for pipelines," European Technical Specification, Germany, 2001. Google Scholar
22. CEN/TS15280 "Evaluation of AC corrosion likelihood of buried pipelines-application to cathodically protected pipelines," Technical Specification, European Committee for Standardization, Germany, 2006. Google Scholar
23. Shabangu, T. H., K. B. Adedeji, B. T. Abe, and P. A. Olubambi, "A study on the impact of ac interference on the cathodic protection potentials of buried pipelines," 25th Southern African Universities Power Engineering Conference, Stellenbosch, South Africa, Jan. 30–Feb. 1, 2017. Google Scholar
24. Isogai, H., A. Ametani, and Y. Hosokawa, "An investigation of induced voltages to an underground gas pipeline from an overhead transmission line," IEEJ Transactions on Power and Energy, Vol. 126, 43-50, 2006.
doi:10.1541/ieejpes.126.43 Google Scholar
25. Isogai, H., A. Ametani, and Y. Hosokawa, "An investigation of induced voltages to an underground gas pipeline from an overhead transmission line," Electrical Engineering in Japan, Vol. 164, No. 1, 43-51, 2008.
doi:10.1002/eej.20465 Google Scholar
26. Djekidel, R. and D. Mahi, "Calculation and analysis of inductive coupling effects for HV transmission lines on aerial pipelines," Przegl¸ad Elektrotechniczny, Vol. 90, No. 9, 151-156, 2014. Google Scholar