1. Kim, J. and K. Konstantinou, "Digital predistortion of wideband signals based on power amplifier model with memory," Electronics Letters, Vol. 37, No. 23, 1417-1418, 2001.
doi:10.1049/el:20010940 Google Scholar
2. Zhou, D. and V. E. De Brunner, "Novel adaptive Nonlinear predistorters based on the direct learning algorithm," IEEE Transactions on Signal Processing, Vol. 55, No. 1, 120-133, 2007.
doi:10.1109/TSP.2006.882058 Google Scholar
3. Changsoo, E. and E. J. Powers, "A new volterra predistorter based on the indirect learning architecture," IEEE Transactions on Signal Processing, Vol. 45, No. 1, 223-227, 1997.
doi:10.1109/78.552219 Google Scholar
4. Morgan, D. R., Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of RF power amplifiers," IEEE Transactions on Signal Processing, Vol. 54, No. 10, 3852-3860, 2006.
doi:10.1109/TSP.2006.879264 Google Scholar
5. Schuster, C., A. Wiens, F. Schmidt, M. Nickel, M. Scholer, R. Jakoby, and H. Maune, "Performance analysis of reconfigurable bandpass filters with continuously tunable center frequency and bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4572-4583, 2017.
doi:10.1109/TMTT.2017.2742479 Google Scholar
6. Tsai, H. Y., T. Y. Huang, and R. B. Wu, "Varactor-tuned compact dual-mode tunable filter with constant passband characteristics," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 9, 1399-1407, 2016.
doi:10.1109/TCPMT.2016.2599205 Google Scholar
7. Hou, J. A. and Y. H. Wang, "Design of compact 90˚ and 180˚ couplers with harmonic suppression using lumped-element bandstop resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 11, 2932-2939, 2010.
doi:10.1109/TMTT.2010.2078950 Google Scholar
8. Zheng, S. Y., Z. W. Liu, Y. M. Pan, Y. Wu, W. S. Chan, and Y. Liu, "Bandpass filtering doherty power amplifier with enhanced efficiency and wideband harmonic suppression," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 63, No. 3, 337-346, 2016.
doi:10.1109/TCSI.2016.2515419 Google Scholar
9. Reece, M. A., S. Contee, and C. W. Waiyaki, "K-band gan power amplifier design with a harmonic suppression power combiner," 2017 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Conference Proceedings, 92-95, 2017.
doi:10.1109/PAWR.2017.7875582 Google Scholar
10. Bassam, S. A., M. Helaoui, and F. M. Ghannouchi, "2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2547-2553, 2011.
doi:10.1109/TMTT.2011.2163802 Google Scholar
11. Pan, W., Y. Liu, and Y. Tang, "A predistortion algorithm based on accurately solving the reverse function of memory polynomial model," IEEE Wireless Communications Letters, Vol. 1, No. 4, 384-387, 2012.
doi:10.1109/WCL.2012.053112.120310 Google Scholar
12. Liu, Y., W. Pan, S. Shao, and Y. Tang, "A new digital predistortion for wideband power amplifiers with constrained feedback bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 12, 683-685, 2013.
doi:10.1109/LMWC.2013.2284786 Google Scholar
13. Muruganathan, S. D. and A. B. Sesay, "A QRD-RLS-based predistortion scheme for high-power amplifier linearization," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 53, No. 10, 1108-1112, 2006.
doi:10.1109/TCSII.2006.882182 Google Scholar
14. Piazza, R., M. R. B. Shankar, and B. Ottersten, "Data predistortion for multicarrier satellite channels based on direct learning," IEEE Transactions on Signal Processing, Vol. 62, No. 22, 5868-5880, 2014.
doi:10.1109/TSP.2014.2358958 Google Scholar
15. Sun, G., C. Yu, Y. Liu, S. Li, and J. Li, "An accurate complexity-reduced simplified Volterra series for RF power amplifiers," Progress In Electromagnetics Research C, Vol. 47, 157-166, 2014.
doi:10.2528/PIERC13121201 Google Scholar
16. Lei, D., G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, "A robust digital baseband predistorter constructed using memory polynomials," IEEE Transactions on Communications, Vol. 52, No. 1, 159-165, 2004.
doi:10.1109/TCOMM.2003.822188 Google Scholar
17. Nghe, C. T., D. Maassen, X. A. Nghiem, and G. Boeck, "Ultra-wideband efficient linearized 10 W GAN-HEMT power amplifier," 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Conference Proceedings, 189-191, 2017.
doi:10.1109/RFIT.2017.8048245 Google Scholar
18. Benedetto, S., E. Biglieri, and R. Daffara, "Modeling and performance evaluation of Nonlinear satellite links-a Volterra series approach," IEEE Transactions on Aerospace and Electronic Systems, Vol. 15, No. 4, 494-507, 1979.
doi:10.1109/TAES.1979.308734 Google Scholar
19. Ding, L. and G. T. Zhou, "Effects of even-order nonlinear terms on power amplifier modeling and predistortion linearization," IEEE Transactions on Vehicular Technology, Vol. 53, No. 1, 156-162, 2004.
doi:10.1109/TVT.2003.822001 Google Scholar
20. Hussein, M. A., V. A. Bohara, and O. Venard, "On the system level convergence of ILA and DLA for digital predistortion," 2012 International Symposium on Wireless Communication Systems (ISWCS), Conference Proceedings, 870-874, 2012.
doi:10.1109/ISWCS.2012.6328492 Google Scholar
21. Lim, Y. H., Y. S. Cho, I. W. Cha, and D. H. Youn, "An adaptive nonlinear prefilter for compensation of distortion in nonlinear systems," IEEE Transactions on Signal Processing, Vol. 46, No. 6, 1726-1730, 1998.
doi:10.1109/78.678508 Google Scholar
22. Haykin, S. O., Adaptive Filter Theory, Pearson Higher Ed., 2013.
23. Sankaran, S. G. and A. A. Louis Beex, "Convergence behavior of affine projection algorithms," IEEE Transactions on Signal Processing, Vol. 48, No. 4, 1086-1096, 2000.
doi:10.1109/78.827542 Google Scholar