Vol. 65
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-03
Design of Frequency Selective Absorber Based on Parallel LC Resonators
By
Progress In Electromagnetics Research M, Vol. 65, 91-100, 2018
Abstract
This paper describes a method of designing Frequency Selective Absorber (FSA) which has a transmission band between two neighboring absorption bands. The proposed FSA is composed of a lossy layer on the top and a lossless layer at the bottom. The transmission characteristic is produced by the parallel LC resonators embedded in the lossy layer while the absorption ability is realized by the lumped resistors constructed in the lossy layer. An equivalent circuit model (ECM) is developed and discussed for a better understanding of this method. An FSA prototype is fabricated and measured for demonstration. Experiments show that the proposed FSA has a transmission band at the center frequency of 8.14 GHz, which agrees well with simulation. Both transmission and refection coefficients from 4.5 GHz to 7.5 GHz and from 9.1 GHz to 11.3 GHz are under -10 dB, which indicate good absorption in these frequency bands. In addition, the performance of the proposed FSA demonstrates a low sensitivity with respect to the polarization of incident EM waves and is maintained well when the incident angles range from 0˚ to 45˚.
Citation
Kunzhe Zhang, Wen Jiang, Junyi Ren, and Shu-Xi Gong, "Design of Frequency Selective Absorber Based on Parallel LC Resonators," Progress In Electromagnetics Research M, Vol. 65, 91-100, 2018.
doi:10.2528/PIERM18010927
References

1. Ghosh, S. and K. Srivastava, "Broadband polarization-insensitive tunable frequency selective surface for wideband shielding," IEEE Trans. Electrom. Compat., Vol. 60, 166-172, 2018.
doi:10.1109/TEMC.2017.2706359

2. Orr, R., V. Fusco, et al. "Circular polarization frequency selective surface operating in Ku and Ka band," IEEE Trans. Antennas Propag., Vol. 63, 5194-5197, 2015.
doi:10.1109/TAP.2015.2477519

3. Vallecchi, A., R. J. Langley, and A. G. Schuchinsky, "Metasurfaces with interleaved conductors: Phenomenology and applications to frequency selective and high impedance surfaces," IEEE Trans. Antennas Propag., Vol. 64, 599-608, 2016.
doi:10.1109/TAP.2015.2511781

4. Baskey, H. B. and M. J. Akhtar, "Design of flexible hybrid nanocomposite structure based on frequency selective surface for wideband radar cross section reduction," IEEE Trans. Microw. Theory Techn., Vol. 65, 2019-2029, 2017.
doi:10.1109/TMTT.2017.2655045

5. Zheng, J. and S. J. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702

6. Joozdani, M. Z., M. K. Amirhosseini, and A. Abdolali, "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electronics Letters, Vol. 52, 767-768, 2016.
doi:10.1049/el.2016.0336

7. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770

8. Yi, B., L. Yang, and P. Liu, "Design of miniaturized and ultrathin absorptive/transmissive radome based on interdigital square loops," Progress In Electromagnetics Research Letters, Vol. 62, 117-123, 2016.
doi:10.2528/PIERL16080201

9. Munk, B. A., Metamaterials: Critique and Alternatives, Wiley, 2009.

10. Chen, Q. and L. Liu, "Absorptive frequency selective surface using parallel LC resonance," Electronics Letters, Vol. 52, No. 6, 418-419, 2016.
doi:10.1049/el.2015.3885

11. Li, A., J. H. Fu, Z. F.Wang, W. Chen, L. Bo, and C. He, "An absorptive/transmissive radome based on metamaterial," IEEE Int. Conf. on Electronic Information and Communication Technology, 596-598, Harbin, China, August 2016.

12. Chen, Q., S. Yang, et al. "Design of absorptive/transmissive frequency-selective surface based on parallel resonance," IEEE Trans. Antennas Propag., Vol. 65, 4897-4902, 2017.
doi:10.1109/TAP.2017.2722875

13. Yu, D., P. Liu, Y. Dong, et al. "Active absorptive frequency selective surface," Electronics Letters, Vol. 53, 1087-1088, 2017.
doi:10.1049/el.2017.1168

14. Yi, B., P. Liu, C. Yang, et al. "Analysis of absorptive and transmissive radome," IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies, 616-619, 2015.

15. Yu, Y., Z. Shen, T. Deng, et al. "3-D frequency-selective rasorber with wide upper absorption band," IEEE Trans. Antennas Propag., Vol. 65, 4363-4367, 2017.
doi:10.1109/TAP.2017.2712812

16. Omar, A., Z. Shen, and H. Huang, "Absorptive frequency-selective reflection and transmission structures," IEEE Trans. Antennas Propag., Vol. 65, 6173-6178, 2017.
doi:10.1109/TAP.2017.2754463

17. Han, Y. and W. Che, "Switchable low-profile broadband frequency-selective rasorber/absorber based on slot arrays," IEEE Trans. Antennas Propag., Vol. 65, 6998-7008, 2017.
doi:10.1109/TAP.2017.2759964

18. Huang, H. and Z. Shen, "Absorptive frequency-selective transmission structure with square loop hybrid resonator," IEEE Antennas Wireless. Propag. Lett., Vol. 16, 3212-3215, 2017.
doi:10.1109/LAWP.2017.2769093

19. Abadi, S. M. A. M. H., J. H. Booske, and N. Behdad, "Exploiting mechanical flexure as a means of tuning the responses of large-scale periodic structures," IEEE Trans. Antennas Propag., Vol. 64, 933-943, 2016.
doi:10.1109/TAP.2015.2513418

20. Jiao, J., N.-X. Xu, X. G. Feng, et al. "Tunable complementary frequency selective surfaces based on cross-elements," Guangxue Jingmi Gongcheng/Optics & Precision Engineering, Vol. 22, 1430-1437, 2014.