Vol. 65
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-07
Suppression of Backscattering from 2-d Aperiodically-Ordered Thinned Patch Array Using Rudin-Shapiro Sequences
By
Progress In Electromagnetics Research M, Vol. 65, 121-128, 2018
Abstract
The discovery of ``quasi-crystals,'' whose X-ray diffraction patterns reveal certain unusual features which do not conform with spatial periodicity, has motivated studies of the wave-dynamical implications of ``aperiodic order.'' This paper discusses various aperiodic configurations generated by Rudin-Shapiro (RS) sequences. These RS sequences constitute ones of the simplest conceivable examples of deterministic aperiodic geometries featuring random-like (dis)order. The scattering properties of aperiodically-ordered thinned 2-D patch arrays based on RS sequences are analyzed by using physical optics approximation. Compared to a periodic case, RS-based antenna array is found to have a substantial reduction in the magnitude of the backscattering component of the scattered signal with half of the elements and the same magnitude of specular reflection. This property is verified by illustrative numerical parametric studies.
Citation
Tarek Sallam, and Ahmed Attiya, "Suppression of Backscattering from 2-d Aperiodically-Ordered Thinned Patch Array Using Rudin-Shapiro Sequences," Progress In Electromagnetics Research M, Vol. 65, 121-128, 2018.
doi:10.2528/PIERM18011206
References

1. Senechal, M., Quasicrystals and Geometry, Cambridge Univ. Press, 1995.

2. Baake, M., J.-B. Suck, M. Schreiber, and P. Häussler (eds.), "A guide to mathematical quasicrystals," Quasicrystals: An Introduction to Structure, Physical Properties, and Applications, 17-48, Springer, Berlin, Germany, 2002.        Google Scholar

3. Levine, D. and P. J. Steinhardt, "Quasicrystals: A new class of ordered structures," Phys. Rev. Lett., Vol. 53, No. 26, 2477-2480, Dec. 1984.
doi:10.1103/PhysRevLett.53.2477        Google Scholar

4. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, 1994.

5. Steinberg, B. D., "Comparison between the peak sidelobe of the random array and algorithmically designed aperiodic arrays," IEEE Trans. Antennas Propagat., Vol. 21, 366-370, May 1973.
doi:10.1109/TAP.1973.1140493        Google Scholar

6. Kim, Y. and D. L. Jaggard, "The fractal random array," Proc. of the IEEE, Vol. 74, No. 9, 1278-1280, Sep. 1986.
doi:10.1109/PROC.1986.13617        Google Scholar

7. Sallam, T. and A. Attiya, "Sidelobe reduction and resolution enhancement by random perturbations in periodic antenna arrays," The 34th National Radio Science Conference (NRSC’17), 49-55, Alexandria, Egypt, Mar. 2017.        Google Scholar

8. Prakash, V. V. S. and R. Mittra, "An efficient technique for analyzing multiple frequency-selective-surface screens with dissimilar periods," Microwave Opt. Technol. Letts., Vol. 35, No. 1, 23-27, Oct. 2002.
doi:10.1002/mop.10506        Google Scholar

9. Chiau, C. C., X. Chen, and C. Parini, "Multiperiod EBG structure for wide stopband circuits," IEE Proc. Microwaves, Antennas and Propagat., Vol. 150, No. 6, 489-492, Dec. 2003.
doi:10.1049/ip-map:20031087        Google Scholar

10. Rudin, W., "Some theorems on Fourier coefficients," Proc. Amer. Math. Soc., Vol. 10, 855-859, 1959.
doi:10.1090/S0002-9939-1959-0116184-5        Google Scholar

11. Dixon, R. C., Spread Spectrum Systems with Commercial Applications, Wiley, 1994.

12. La Cour-Harbo, A., "On the Rudin-Shapiro transform," Appl. Comp. Harmonic Anal., Vol. 24, No. 3, 310-328, 2008.
doi:10.1016/j.acha.2007.05.003        Google Scholar

13. Galdi, V., V. Pierro, G. Castaldi, I. M. Pinto, and L. B. Felsen, "Radiation properties of one-dimensional random-like antenna arrays based on Rudin-Shapiro sequences," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3568-3575, Nov. 2005.
doi:10.1109/TAP.2005.858863        Google Scholar

14. Stephen, D. S., T. Mathew, K. A. Jose, C. K. Aanandan, P. Mohanan, and K. G. Nair, "New simulated corrugated scattering surface giving wideband characteristics," Electron. Lett., Vol. 29, No. 4, 329-331, Feb. 1993.
doi:10.1049/el:19930223        Google Scholar

15. Swandic, J. R., "Bandwidth limits and other considerations for monostatic RCS reduction by virtual shaping,", Tech. Rep. A927 224, Naval Surface Warfare Center, Carderock Div., Bethesda, MD, Jan. 2004.        Google Scholar

16. Jayasinghe, J. W., J. Anguera, and D. N. Uduwawala, "A high-directivity microstrip patch antenna design by using genetic algorithm optimization," Progress In Electromagnetics Research C, Vol. 37, 131-144, 2013.
doi:10.2528/PIERC13010805        Google Scholar

17. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., 2012.

18. Kolár, M., "New class of one-dimensional quasicrystals," Phys. Rev. B, Vol. 47, No. 9, 5489-5492, Mar. 1993.
doi:10.1103/PhysRevB.47.5489        Google Scholar

19. Kolár, M., B. Iochum, and L. Raymond, "Structure factor of 1D systems (superlattices) based on two-letter substitution rules: I. δ (Bragg) peaks," J. Phys. A: Math. Gen., Vol. 26, No. 24, 7343-7366, Dec. 1993.
doi:10.1088/0305-4470/26/24/011        Google Scholar

20. Brillhart, J. and P. Morton, "A case study in mathematical research: The Golay-Rudin-Shapiro sequence," Amer. Math. Mon., Vol. 103, No. 10, 854-869, Dec. 1996.
doi:10.1080/00029890.1996.12004830        Google Scholar

21. Queffélec, M., "Substitution dynamical systems - Spectral analysis," Lecture Notes in Mathematics, Vol. 1294, Springer, Berlin, 1987.        Google Scholar

22. Fogg, N. P., V. Berthé, S. Ferenczi, C. Mauduit, and A. Siegel (eds.), "Substitutions in dynamics, arithmetics, and combinatorics," Lecture Notes in Mathematics, Vol. 1794, Springer, Berlin, 2002.        Google Scholar

23. Berthé, V., "Conditional entropy of some automatic sequences," J. Phys. A, Math. Gen., Vol. 27, No. 24, 7993-8006, Dec. 1994.
doi:10.1088/0305-4470/27/24/011        Google Scholar