Vol. 67
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-06
Substrate Integrated Waveguide (SIW) Diplexer with Novel Input/Output Coupling and No Separate Junction
By
Progress In Electromagnetics Research M, Vol. 67, 75-84, 2018
Abstract
A microwave diplexer implemented by using the twenty-first century substrate integrated waveguide (SIW) transmission line technology is presented. No separate junction (be it resonant or non-resonant) was used in achieving the diplexer, as the use of an external junction for energy distribution in a diplexer normally increases design complexity and leads to a bulky device. The design also featured a novel input/output coupling technique at the transmit and receive sides of the diplexer. The proposed SIW diplexer has been simulated using the full-wave finite element method (FEM), Keysight electromagnetic professional (EMPro) 3D simulator. The design has also been validated experimentally and results presented. Simulated and measured results show good agreement. The measured minimum insertion losses achieved on transmit and receive channels of the diplexer are 2.86 dB and 2.91 dB, respectively. The measured band isolation between the two channels is better than 50 dB.
Citation
Augustine O. Nwajana, Amadu Dainkeh, and Kenneth Siok Kiam Yeo, "Substrate Integrated Waveguide (SIW) Diplexer with Novel Input/Output Coupling and No Separate Junction," Progress In Electromagnetics Research M, Vol. 67, 75-84, 2018.
doi:10.2528/PIERM18021603
References

1. Zhu, L., R. R. Mansour, and M. A. Yu, "A compact waveguide diplexer employing dual-band resonators," IEEE MTT-S International Microwave Symposium Digest, 1-6, Tampa, FL, USA, June 2014.

2. Deng, H. W., Y. J. Zhao, F. Fu, X. J. Zhou, and Y. Y. Liu, "Compact and high isolation microstrip diplexer for GPS and UWB application," IET Electronics Letters, Vol. 49, No. 10, 659-661, May 2013.
doi:10.1049/el.2012.3247

3. Xiao, J.-K., M. Zhu, Y. Li, L. Tian, and J.-G. Ma, "High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 781-783, December 2015.
doi:10.1109/LMWC.2015.2495194

4. Liu, H., W. Xu, Z. Zhang, and X. Guan, "Compact diplexer using slotline stepped impedance resonator," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 2, 75-77, February 2013.
doi:10.1109/LMWC.2013.2238912

5. Xu, W.-Q., M.-H. Ho, and C. G. Hsu, "UMTS diplexer design using dual-mode stripline ring resonators," IET Electronics Letters, Vol. 43, No. 13, 721-722, June 2007.
doi:10.1049/el:20070747

6. Lai, C.-H., G.-T. Zhou, and T.-G. Ma, "On-chip miniaturized diplexer using jointed dual-mode right-/left-handed synthesized coplanar waveguides on GIPD process," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 4, 245-247, April 2014.
doi:10.1109/LMWC.2014.2299553

7. Nwajana, A. O. and K. S. K. Yeo, "Multi-coupled resonator microwave diplexer with high isolation," Proceedings of the 46th European Microwave Conference (EuMC 2016), 1167-1170, London, UK, October 2016.

8. Palma, L. D., F. Bilotti, A. Toscano, and L. Vegni, "Design of a waveguide diplexer based on connected bi-omega particles," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 3, 126-128, March 2012.
doi:10.1109/LMWC.2012.2186560

9. Skaik, T. F., M. J. Lancaster, and F. Huang, "Synthesis of multiple output coupled resonator circuits using coupling matrix optimization," IET Journal of Microwaves, Antenna & Propagation, Vol. 5, No. 9, 1081-1088, June 2011.
doi:10.1049/iet-map.2010.0447

10. Schorer, J., J. Bomemann, and U. Rosenberg, "Mode-matching design of substrate mounted waveguide (SMW) components," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 8, 2401-2408, August 2016.

11. Packiaraj, D., M. Ramesh, and A. T. Kalghatgi, "Cavity diplexer using tapped line interdigital filters," Proceedings of the 2005 Asia-Pacific Microwave Conference (APMC 2005), 1-3, Suzhou, China, December 2005.

12. Adabi, A. and M. Tayarani, "Substrate integration of dual inductive post waveguide filter," Progress In Electromagnetic Research B, Vol. 7, 321-329, 2008.
doi:10.2528/PIERB08051002

13. Chen, X.-P. and K. Wu, "Substrate integrated waveguide filter: Basic design rules and fundamental structure features," IEEE Microwave Magazine, Vol. 15, No. 5, 108-116, July 2014.
doi:10.1109/MMM.2014.2321263

14. Cheng, Y. J., Substrate Integrated Antennas and Arrays, CRC Press, New York, 2015.
doi:10.1201/b18685

15. Han, S.-H., X. L. Wang, Y. Fan, Z. Q. Yang, and Z. N. He, "The generalized Chebyshev substrate integrated waveguide diplexer," Progress In Electromagnetic Research, Vol. 73, 29-38, 2007.
doi:10.2528/PIER07032002

16. Nwajana, A. O., K. S. K. Yeo, and A. Dainkeh, "Low cost SIW Chebyshev bandpass filter with new input/output connection," Proceedings of the 16th Mediterranean Microwave Symposium (MMS 2016), 1-4, Abu Dhabi, UAE, November 2016.

17. Chen, X., W. Hong, T. Cui, J. Chen, and K. Wu, "Substrate integrated waveguide (SIW) linear phase filter," IEEE Microwave and Wireless Component Letters, Vol. 15, No. 11, 787-789, November 2005.
doi:10.1109/LMWC.2005.859021

18. Deslandes, D. and K. Wu, "Accurate modelling, wave mechanisms, and design considerations of a substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2516-2526, June 2006.
doi:10.1109/TMTT.2006.875807

19. Nwajana, A. O. and K. S. K. Yeo, "Microwave diplexer purely based on direct synchronous and asynchronous coupling," Radioengineering, Vol. 25, No. 2, 247-252, June 2016.
doi:10.13164/re.2016.0247

20. Yeo, K. S. K. and A. O. Nwajana, "A novel microstrip dual-band bandpass filter using dual-mode square patch resonators," Progress In Electromagnetic Research C, Vol. 36, 233-247, January 2013.
doi:10.2528/PIERC12120312

21. Nwajana, A. O., A. Dainkeh, and K. S. K. Yeo, "Substrate integrated waveguide (SIW) bandpass filter with novel microstrip-CPW-SIW input coupling," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 2, 393-402, June 2017.
doi:10.1590/2179-10742017v16i2793

22. Hong, J.-S., Microstrip Filters for RF/Microwave Applications, 2nd Ed., Wiley, New York, 2011.
doi:10.1002/9780470937297

23. Deslandes, D. and K. Wu, "Integrated transition of coplanar to rectangular waveguides," IEEE MTT-S International Microwave Symposium Digest, 619-622, Phoenix, AZ, USA, May 2001.

24. Dainkeh, A., A. O. Nwajana, and K. S. K. Yeo, "Filtered power splitter using microstrip square open loop resonators," Progress In Electromagnetic Research C, Vol. 64, 133-140, May 2016.
doi:10.2528/PIERC16042005