1. Guney, K. and M. Onay, "Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm," Progress In Electromagnetics Research, Vol. 70, 21-36, 2007.
doi:10.2528/PIER07011204 Google Scholar
2. Haupt, R. L., "Phase-only adaptive nulling with a genetic algorithm," IEEE Trans. Antennas Propag., Vol. 45, No. 6, 1009-1015, Jun. 1997.
doi:10.1109/8.585749 Google Scholar
3. Mohammed, J. R., "Element selection for optimized multi-wide nulls in almost uniformly excited arrays," IEEE Antennas and Wireless Communication Letters Digital Object Identifier, 10.1109/LAWP.2018.2807371, Feb. 2018. Google Scholar
4. Morgan, D., "Partially adaptive array techniques," IEEE Trans. Antennas Propag., Vol. 26, No. 6, 823-833, Nov. 1978.
doi:10.1109/TAP.1978.1141952 Google Scholar
5. Mohammed, J. R. and K. H. Sayidmarie, "Performance evaluation of the adaptive sidelobe canceller with various auxiliary configurations," AEÜ International Journal of Electronics and Communications, Vol. 80, 179-185, 2017.
doi:10.1016/j.aeue.2017.06.039 Google Scholar
6. Mohammed, J. R., "Optimal null steering method in uniformly excited equally spaced linear array by optimizing two edge elements," Electronics Letters, Vol. 53, No. 13, 835-837, Jun. 2017.
doi:10.1049/el.2017.1405 Google Scholar
7. Mohammed, J. R. and K. H. Sayidmarie, "Null steering method by controlling two elements," IET Microw. Antennas Propag., Vol. 8, No. 15, 1348-1355, 2014.
doi:10.1049/iet-map.2014.0213 Google Scholar
8. Mayhan, J. T., "Thinned array configurations for use with satellite based adaptive antennas," IEEE Trans. Antennas Propag., Vol. 28, No. 6, 846-856, Nov. 1980.
doi:10.1109/TAP.1980.1142438 Google Scholar
9. Rocca, P., R. L. Haupt, and A. Massa, "Interference suppression in uniform linear arrays through a dynamic thinning strategy," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4525-4533, Dec. 2011.
doi:10.1109/TAP.2011.2165506 Google Scholar
10. Toso, G., C. Mangenot, and A. G. Roederer, "Sparse and thinned arrays for multiple beam satellite applications," Proc. Eur. Conf. Antennas Propag. (EuCAP 2007), 1-4, Edinburgh, England, Nov. 11–16, 2007. Google Scholar
11. He, J., D.-Z. Feng, and N. H. Younan, "Optimizing thinned antenna array geometry in MIMO radar systems using multiple genetic algorithm," IEEE CIE International Conference on Radar, Chengdu, China, Oct. 24–27, 2011. Google Scholar
12. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 42, No. 7, 993-999, Jul. 1994.
doi:10.1109/8.299602 Google Scholar
13. Viani, F., L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 993-1003, 2010.
doi:10.1163/156939310791285227 Google Scholar
14. Nanbo, J. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 556-567, Mar. 2007.
doi:10.1109/TAP.2007.891552 Google Scholar
15. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2003.
doi:10.1163/156939304774113089 Google Scholar
16. Quevedo-Teruel, O. and E. Rajo-Iglesias, "Ant colony optimization in thinned array synthesis with minimum sidelobe level," IEEE Antennas Wireless Propag. Lett., Vol. 5, No. 1, 349-352, Dec. 2006.
doi:10.1109/LAWP.2006.880693 Google Scholar
17. Keizer, W. P. M. N., "Linear array thinning using iterative FFT techniques," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2257-2260, Aug. 2008.
doi:10.1109/TAP.2008.927580 Google Scholar
18. Singh, U. and T. S. Kamal, "Optimal synthesis of thinned arrays using biogeography based optimization," Progress In Electromagnetics Research M, Vol. 24, 141-155, 2012.
doi:10.2528/PIERM12020502 Google Scholar
19. Donelli, M., A. Martini, and A. Massa, "A hybrid approach based on PSO and Hadamard difference sets for the synthesis of square thinned arrays," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2491-2495, Aug. 2009.
doi:10.1109/TAP.2009.2024570 Google Scholar
20. Caorsi, S., A. Lommi, A. Massa, and M. Pastorino, "Peak sidelobe level reduction with a hybrid approach based on GAs and difference sets," IEEE Trans. Antennas Propag., Vol. 52, No. 4, 1116-1121, Apr. 2004.
doi:10.1109/TAP.2004.825689 Google Scholar
21. Donelli, M., "Design of broadband metal nanosphere antenna arrays with a hybrid evolutionary algorithm," Optics Letters, Vol. 38, No. 4, 401-403, Feb. 15, 2013.
doi:10.1364/OL.38.000401 Google Scholar
22. Febvre, P. and M. Donelli, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012. Google Scholar
23. Tseng, F. I., "Design of array and line-source antennas for Taylor patterns with a null," IEEE Trans. Antennas Propagat., Vol. 27, 474-479, Jul. 1979.
doi:10.1109/TAP.1979.1142122 Google Scholar
24. Pogorzelski, R. J., "On a simple method of obtaining sidelobe reduction over a wide angular range in one and two dimensions," IEEE Trans. Antennas Propag., Vol. 49, No. 3, 475-482, Mar. 2001.
doi:10.1109/8.918624 Google Scholar
25. Sayidmarie, K. H. and J. R. Mohammed, "Performance of a wide angle and wideband nulling method for phased arrays," Progress In Electromagnetics Research M, Vol. 33, 239-249, Oct. 2013. Google Scholar