1. Forooshani, A. E., S. Bashir, D. G. Michelson, and S. Noghanian, "A survey of wireless communications and propagation modeling in underground mines," Communications Surveys & Tutorials, IEEE, Vol. 15, No. 4, 1524-1545, 4th Quarter, 2013.
doi:10.1109/SURV.2013.031413.00130 Google Scholar
2. Mo, L. and Y. Liu, "Underground coal mine monitoring with wireless sensor networks," ACM Transactions on Sensor Networks, Vol. 5, Mar. 2009. Google Scholar
3. Sun, Z. and I. F. Akyildiz, "Channel modeling and analysis for wireless networks in underground mines and road tunnels," IEEE Transactions on Communications, Vol. 58, No. 6, Jun. 2010. Google Scholar
4. Wang, S., "Radio wave attenuation character in the confined environments of rectangular mine tunnel," Modern Applied Science, Vol. 4, No. 2, 65-70, 2010.
doi:10.5539/mas.v4n2p65 Google Scholar
5. Huo, Y., Z. Xu, H. D. Zheng, and X. Zhou, "Effect of antenna on propagation characteristics of electromagnetic waves in tunnel environments," Asia Pacific Conference on Postgraduate Research in Microelectronics Electronics, 2009, Prime Asia 2009, 268-271, 2009.
doi:10.1109/PRIMEASIA.2009.5397396 Google Scholar
6. Mabrouk, I. B., L. Talbi, M. Nedil, and K. Hettak, "MIMO-UWB channel characterization within an underground mine gallery," IEEE Transactions on Antennas and Propagation, Vol. 60, 4866-4874, Oct. 2012. Google Scholar
7. Mabrouk, I. B., L. Talbi, and M. Nedil, "Performance evaluation of a MIMO system in underground mine gallery," IEEE Antennas Wireless Propag. Lett., Vol. 11, 830-833, 2012.
doi:10.1109/LAWP.2012.2208260 Google Scholar
8. Ghaddar, M., M. Nedil, I. Ben Mabrouk, and L. Talbi, "Multiple-input multiple-output beam-space for high-speed wireless communication in underground mine," Microwaves, Antennas & Propagation, IET, Vol. 10, No. 1, 8-15, 2015.
doi:10.1049/iet-map.2014.0464 Google Scholar
9. Rissafi, Y., L. Talbi, and M. Ghaddar, "Experimental characterization of an UWB propagation channel in underground mines," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 240-246, 2012.
doi:10.1109/TAP.2011.2167927 Google Scholar
10. Benzakour, A., S. Affes, C. Despins, and P. M. Tardif, "Wideband measurements of channel characteristics at 2.4 and 5.8 GHz in underground mining environments," Vehicular Technology Conference, 2004. Google Scholar
11. Briso-Rodriguez, C., J. M. Cruz, and J. I. Alonso, "Measurements and modeling of distributed antenna systems in railway tunnels," IEEE Transactions on Vehicular Technology, Vol. 56, No. 5, 2870-2879, Sept. 2007.
doi:10.1109/TVT.2007.900500 Google Scholar
12. Guan, K., Z. Zhong, J. I. Alonso, and C. Briso-Rodriguez, "Measurement of distributed antenna systems at 2.4 GHz in a realistic subway tunnel environment," IEEE Transactions on Vehicular Technology, Vol. 61, No. 2, 834-837, Feb. 2012.
doi:10.1109/TVT.2011.2178623 Google Scholar
13. Valenzuela, G. R., "Depolarization of E-M waves by slightly rough surfaces," IEEE Transactions on Antennas and Propagation, 3rd Edition, Vol. 15, 552-557, 1967. Google Scholar
14. Wright, J. W., "A new model for sea clutter," IEEE Transactions on Antennas and Propagation, Vol. 16, 217-223, 1968.
doi:10.1109/TAP.1968.1139147 Google Scholar
15. Raemer, H. R. and D. D. Preis, "Aspects of parallel-polarized and cross-polarized radar returns from a rough sea surface," IEEE Trans. on Electromagnetic Compatibility, Vol. 22, No. 1, 29-44, Feb. 1980.
doi:10.1109/TEMC.1980.303818 Google Scholar
16. Vaughan, R. G., "Polarization diversity in mobile communications," IEEE Transactions on Vehicular Technology, Vol. 39, No. 3, 177-186, 1990.
doi:10.1109/25.130998 Google Scholar
17. Kwon, S.-C. and G. L. Stuber, "Geometrical theory of channel depolarization," IEEE Transactions on Vehicular Technology, Vol. 60, No. 8, 3542-3556, 2011.
doi:10.1109/TVT.2011.2163094 Google Scholar
18. El Azhari, M. E., M. Nedil, M. Seddiki, N. Kandil, and L. Talbi, "Radio-channel characterization of an underground mine using circularly polarized antennas at 2.4 GHz," Proc. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), Jul. 2017. Google Scholar
19. El Azhari, M. E., M. Nedil, M. Seddiki, N. Kandil, and L. Talbi, "2.4 GHz radio-channel characterization of an underground mine using patch antennas," Proc. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), Jul. 2017. Google Scholar
20. El Azhari, M. E., M. Nedil, I. Benmabrouk, K. Ghanem, and L. Talbi, "Characterization of an off-body channel at 2.45 GHz in an underground mine environment," Progress In Electromagnetics Research M, Vol. 43, 91-100, 2015.
doi:10.2528/PIERM15061504 Google Scholar
21. Yahya, M. and Z. Awang, "Cross polarization ratio analysis of circular polarized patch antenna," 2010 International Conference on Electromagnetics in Advanced Applications, 442-445, Sydney, NSW, 2010.
doi:10.1109/ICEAA.2010.5653152 Google Scholar
22. Rappaport, T. S., "Mobile radiop propagation: Small scale fading and multipath," Wireless Communications: Principle and Practice, 2nd Edition, Prentice Hall, 2001. Google Scholar
23. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, 1998.
24. Sarris, J. N. and R. Andrew, "Ricean K-factor measurements in a home and an office environment in the 60 GHz band," Mobile and Wireless Communications Summit, 16th IST. IEEE, 1-5, 2007. Google Scholar
25. Varzakas, P., "Average channel capacity for rayleigh fading spread spectrum MIMO systems," International Journal of Communication Systems, Vol. 19, No. 10, 1081-1087, Dec. 2006.
doi:10.1002/dac.784 Google Scholar