1. Valagiannopoulos, C. A. and N. L. Tsitsas, "Integral equation analysis of a low-profile receiving planar microstrip antenna with a cloaking superstrate," Radio Science, Vol. 51, No. 12, 2012. Google Scholar
2. Valagiannopoulos, C. A., "Semi-analytic solution to a cylindrical microstrip with inhomogeneous substrate," Electromagnetics, Vol. 27, No. 8, 527-544, 2007.
doi:10.1080/02726340701669524 Google Scholar
3. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665-680, 2007.
doi:10.1163/156939307780667337 Google Scholar
4. Zhao, Y., X. W. Shi, and L. Xu, "Modeling with NURBS surfaces used for the calculation of RCS," Progress In Electromagnetics Research, Vol. 78, 49-59, 2008.
doi:10.2528/PIER07082903 Google Scholar
5. Xu, L., J. Tian, and X. W. Shi, "A closed-form solution to analyze RCS of cavity with rectangular cross section," Progress In Electromagnetics Research, Vol. 79, 195-208, 2008.
doi:10.2528/PIER07090503 Google Scholar
6. Li, X. F., Y. J. Xie, and R. Yang, "Bistatic RCS prediction for complex targets using modified current marching technique," Progress In Electromagnetics Research, Vol. 93, 13-28, 2009.
doi:10.2528/PIER09030804 Google Scholar
7. Zhang, G. H., M. Xia, and X. M. Jiang, "Transient analysis of wire structures using time domain integral equation method with exact matrix elements," Progress In Electromagnetics Research, Vol. 92, 281-298, 2009.
doi:10.2528/PIER09032003 Google Scholar
8. Valagiannopoulos, C. A., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137-152, 2007.
doi:10.2528/PIER07052502 Google Scholar
9. Song, J., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas & Propagation, Vol. 45, No. 10, 1488-1493, 2002.
doi:10.1109/8.633855 Google Scholar
10. Velamparambil, S., W. C. Chew, and J. Song, "10 million unknowns: Is it that big?," IEEE Antennas & Propagation Magazine, Vol. 45, No. 2, 43-58, 2003.
doi:10.1109/MAP.2003.1203119 Google Scholar
11. Velamparambil, S. and W. C. Chew, "Analysis and performance of a distributed memory multilevel fast multipole algorithm," IEEE Transactions on Antennas & Propagation, Vol. 53, No. 8, 2719-2727, 2005.
doi:10.1109/TAP.2005.851859 Google Scholar
12. Fostier, J., B. Michiels, et al. "Solving billions of unknowns using the parallel MLFMA and a Tier 1 supercomputer," IEEE Radio Science Conference, 1, 2015. Google Scholar
13. Nguyen, N. and D. Bein, "Distributed MPI cluster with Docker swarm mode," IEEE Computing and Communication Workshop and Conference, 1-7, 2017. Google Scholar
14. Sterling, T., "BEOWULF: A parallel workstation for scientific computation," International Conference on Parallel Processing, 11-14, 1995. Google Scholar
15. Merkel, D., "Docker: Lightweight Linux containers for consistent development and deployment," Linux Journal, No. 2, 2014. Google Scholar
16. Pan, X. M. and X. Q. Sheng, "A highly efficient parallel approach of multi-level fast multipole algorithm," Acta Electronica Sinica, Vol. 20, No. 8, 1081-1092, 2007. Google Scholar
17. Takrimi, M., E. Özgür, and V. B. Ertürk, "A novel broadband multilevel fast multipole algorithm with incomplete-leaf tree structures for multiscale electromagnetic problems," IEEE Transactions on Antennas & Propagation, Vol. 64, No. 6, 2445-2456, 2016.
doi:10.1109/TAP.2016.2552545 Google Scholar