Vol. 69
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-13
Analysis of Attenuation Effect of Grid-Like Spatial Shields Used in Lightning Protection of Buildings
By
Progress In Electromagnetics Research M, Vol. 69, 137-149, 2018
Abstract
A frequency-domain-based electromagnetic model of the lightning protection system of buildings is presented in this paper. Numerical model can accurately take into account all conductors of the lightning protection system, i.e. air-termination system, down-conductor system and earth-termination system. Using the presented electromagnetic model, attenuation effects of a grid-like spatial shield - sometimes used in lightning protection of buildings - will be analyzed for both the electric field and the magnetic field caused by a lightning strike. Three-dimensional distributions of the fields inside the shield are provided in the paper.
Citation
Dino Lovrić Slavko Vujević , "Analysis of Attenuation Effect of Grid-Like Spatial Shields Used in Lightning Protection of Buildings," Progress In Electromagnetics Research M, Vol. 69, 137-149, 2018.
doi:10.2528/PIERM18022006
http://www.jpier.org/PIERM/pier.php?paper=18022006
References

1. Sowa, A., "Lightning overvoltages in wires within the buildings," International Symposium on Electromagnetic Compatibility, 99-102, 1991, DOI: 10.1109/ISEMC.1991.148192.

2. Sowa, A., "Surge current distribution in building during a direct lightning stroke," International Symposium on Electromagnetic Compatibility, 12-16, 1991, DOI: 10.1109/ISEMC.1991.148193.

3. Li, L. and V. A. Rakov, "Distribution of currents in the lightning protective system of a residential building --- Part II: Numerical modeling," IEEE Transactions on Power Delivery, Vol. 23, No. 4, 2447-2455, 2008.
doi:10.1109/TPWRD.2008.923075

4. Hedge, V. and V. Shivanand, "On the characteristics of lightning currents in the steel reinforced concrete building due to a lightning strike," Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 865-868, 2012, DOI: 10.1109/APEMC.2012.6237924.

5. Markowska, R., "Lightning current distributions in LPS of a building with a radio base station on the roof," 2009 International Symposium on Electromagnetic Compatibility Kyoto, 845-847, 2009.

6. Miyazaki, S. and M. Ishii, "Role of steel frames of buildings for mitigation of lightning-induced magnetic fields," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 2, 333-339, 2008.
doi:10.1109/TEMC.2008.922787

7. Ishii, M., K. Miyabe, and A. Tatematsu, "Induced voltages and currents on electrical wirings in building directly hit by lightning," Electric Power Systems Research, Vol. 85, 2-6, 2012.
doi:10.1016/j.epsr.2011.07.001

8. Chen, J., B. Zhou, F. Zhao, and S. Qiu, "Finite-difference time-domain analysis of the electromagnetic environment in a reinforced concrete structure when struck by lightning," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 4, 914-920, 2010.
doi:10.1109/TEMC.2010.2043437

9. Tatematsu, A., F. Rachidi, and M. Rubinstein, "Calculation of electromagnetic fields inside a building with layered reinforcing bar struck by lightning using the FDTD method," International Symposium on Electromagnetic Compatibility, 386-389, 2014.

10. Liu, R., Y. Wang, Z. Zhao, and Y. Zhang, "Magnetic field distribution inside metallic gridlike buildings struck by lightning based on finite element method," International Conference on Lightning Protection, 1712-1715, 2014.

11. Gomez, P., "Frequency domain model for transient analysis of lightning protection systems of buildings," Heliyon, Vol. 2, 1-19, 2016.

12. Lovric, D. and S. Vujevic, "Fixed-image-method-based transient electromagnetic model of grounding system in horizontally stratified multilayer medium," Progress In Electromagnetics Research M, Vol. 44, 1-12, 2015.
doi:10.2528/PIERM15072403

13. Vujevic, S. and D. Lovric, "On continuous numerical Fourier transform for transient analysis of lightning current related phenomena," Electric Power Systems Research, Vol. 119, 364-369, 2015.
doi:10.1016/j.epsr.2014.10.020

14. Vujevic, S. and D. Lovric, "Inverse continuous numerical Fourier transform for transient analysis of electromagnetic phenomena," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 5, 1149-1154, 2015.
doi:10.1109/TEMC.2015.2417654

15. Chu, E. and A. George, Inside the FFT Black Box, Serial and Parallel Fast Fourier Transform Algorithms, CRC Press, Boca Raton, 2000.

16. Vujevic, S. and P. Sarajcev, "Potential distribution for a harmonic current point source in horizontally stratified multilayer medium," COMPEL --- The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 27, No. 3, 624-637, 2008.
doi:10.1108/03321640810861070

17. Sarajcev, P., S. Vujevic, and D. Lovric, "Time-harmonic current distribution on conductor grid in horizontally stratified multilayer medium," Progress In Electromagnetics Research B, Vol. 31, 67-87, 2011.
doi:10.2528/PIERB11040807

18. Vujevic, S., P. Sarajcev, and D. Lovric, "Time-harmonic analysis of grounding system in horizontally stratified multilayer medium," Electric Power Systems Research, Vol. 83, No. 1, 28-34, 2012.
doi:10.1016/j.epsr.2011.09.008

19. Beerends, R. J., H. G. Ter Morche, J. C. van den Berg, and E. M. van de Vrie, Fourier and Laplace Transforms, Cambridge University Press, Cambridge, 2003.
doi:10.1017/CBO9780511806834

20. Gander, W. and W. Gautschi, "Adaptive quadrature --- Revisited," BIT, Vol. 40, No. 1, 84-101, 2000.
doi:10.1023/A:1022318402393

21. Silvester, P. P. and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd Ed., Cambridge University Press, Cambridge, 1996.
doi:10.1017/CBO9781139170611

22. Sarajcev, P., S. Vujevic, and D. Lovric, "Computing the electromagnetic field of the system of arbitrarily positioned conductors in horizontally stratified multilayer medium," International Journal of Numerical Modelling --- Electronic Networks Devices and Fields, Vol. 28, No. 2, 121-137, 2015.
doi:10.1002/jnm.1991

23. Paul, C. R., Introduction to Electromagnetic Compatibility, Wiley India Private Limited, 2010.

24. Heidler, F., "Analytical lightning current function for LEMP-calculation," International Conference on Lightning Protection, 63-66, 1985.