Vol. 69
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-13
Compact Branch-Line Coupler with Harmonic Suppression Based on a Planar Simplified Dual Composite Right/Left-Handed Transmission Line Structure
By
Progress In Electromagnetics Research M, Vol. 69, 127-138, 2018
Abstract
In this paper, a planar simplified dual composite right/left-handed (SD-CRLH) transmission line (TL) structure is proposed and applied to the design of branch-line coupler. The SD-CRLH TL is obtained by a microstrip line with an open-ended stub in spiral form. Since this structure has unusual phase shift characteristics with a transmission zero out of the passband, the branch-line coupler with the planar SD-CRLH TL can achieve both size reduction and harmonic suppression. Such a branch-line coupler operating at 0.915 GHz is investigated and fabricated. The equivalent circuit simulation, full-wave simulation and measurement results agree well with each other. From the results, it is shown that the area of the proposed branch line coupler is reduced by 74% compared to the conventional one while maintaining similar performance, and the second harmonic suppression can be lower than -45 dB.
Citation
Cheng Wang, and Wanchun Tang, "Compact Branch-Line Coupler with Harmonic Suppression Based on a Planar Simplified Dual Composite Right/Left-Handed Transmission Line Structure," Progress In Electromagnetics Research M, Vol. 69, 127-138, 2018.
doi:10.2528/PIERM18022706
References

1. Pozar, D. M., Microwave Engineering, John Wiley & Sons, New York, 2005.

2. Vogel, R. W., "Analysis and design of lumped-and lumped-distributed-element directional couplers for MIC and MMIC applications," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 2, 253-262, Feb. 1992.
doi:10.1109/22.120097

3. Tang, C. W. and M. G. Chen, "Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1926-1934, Sep. 2007.
doi:10.1109/TMTT.2007.904331

4. Jung, S. C., R. Negra, and F. M. Ghannouchi, "A design methodology for miniaturized 3-dB branch-Line hybrid couplers using distributed capacitors printed in the inner area," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 2950-2953, Dec. 2008.
doi:10.1109/TMTT.2008.2007323

5. Tseng, C. H. and C. L. Chang, "A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 7, 2085-2092, Jul. 2012.
doi:10.1109/TMTT.2012.2195019

6. Krishna, I. S., R. K. Barik, S. S. Karthikeyan, and P. Kokil, "A miniaturized harmonic suppressed 3 dB branch line coupler using H-shaped microstrip line," Microw. and Opt. Technol. Lett., Vol. 59, No. 4, 913-918, 2017.
doi:10.1002/mop.30428

7. Tsai, K.-Y., H.-S. Yang, J.-H. Chen, and Y.-J. E. Chen, "A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression," IEEE Microw. Wirel. Compon. Lett., Vol. 21, 537-539, 2011.
doi:10.1109/LMWC.2011.2164901

8. Dwari, S. and S. Sanyal, "Size reduction and harmonic suppression of microstrip branch-line coupler using defected ground structure," Microw. and Opt. Technol. Lett., Vol. 48, No. 10, 1966-1969, 2006.
doi:10.1002/mop.21830

9. Savitri, B., V. A. Fono, B. Alavikia, L. Talbi, and K. Hettak, "Novel approach in design of miniaturized passive microwave circuit components using metamaterials," Microw. and Opt. Technol. Lett., Vol. 59, No. 6, 1341-1347, 2017.
doi:10.1002/mop.30538

10. Ghali, H. and T. A. Moselhy, "Miniaturized fractal rat-race, branch-line, and coupled-line hybrids," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 11, 2513-2520, Nov. 2004.
doi:10.1109/TMTT.2004.837154

11. Velan, S. and M. Kanagasabai, "Compact microstrip branch-line coupler mwith wideband quadrature phase balance," Microw. and Opt. Technol. Lett., Vol. 58, No. 6, 1369-1374, 2016.
doi:10.1002/mop.29798

12. Reshma, S. and M. K. Mandal, "Miniaturization of a 90◦ hybrid coupler with improved bandwidth performance," IEEE Microw. Wirel. Compon. Lett., Vol. 26, 891-893, 2016.
doi:10.1109/LMWC.2016.2614977

13. Lai, A., T. Itoh, and C. Caloz, "Composite right/left-handed transmission line metamaterials," IEEE Microw. Mag., Vol. 5, No. 3, 34-50, 2004.
doi:10.1109/MMW.2004.1337766

14. Yang, T., P. L. Chi, and T. Itoh, "Compact quarter-wave resonator and its applications to miniaturized diplexer and triplexer," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 2, 260-269, Feb. 2011.
doi:10.1109/TMTT.2010.2095029

15. Xu, H. X., G. M. Wang, Z. M. Xu, et al. "Dual-shunt branch circuit and harmonic suppressed device application," Appl. Phys. A, Vol. 108, No. 2, 497-502, 2012.
doi:10.1007/s00339-012-6923-5

16. Xu, H. X., G. M. Wang, X. Chen, and T. P. Li, "Broadband balun using fully artificial fractalshaped composite right/left handed transmission line," IEEE Microw. Wirel. Compon. Lett., Vol. 22, No. 1, 16-18, 2012.
doi:10.1109/LMWC.2011.2173929

17. Caloz, C., T. Itoh, and A. Rennings, "CRLH metamaterial leaky-wave and resonant antennas," IEEE Antennas Propag. Mag., Vol. 50, No. 5, 25-39, 2008.
doi:10.1109/MAP.2008.4674709

18. Xu, H. X., G. M. Wang, M. Q. Qi, et al. "Analysis and design of two-dimensional resonant-type composite right left handed transmission lines with compact gain-enhanced resonant antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 735-747, 2013.
doi:10.1109/TAP.2012.2215298

19. Xu, H. X., G. M.Wang, M. Q. Qi, and T. Cai, "Compact fractal left-handed structures for improved cross-polarization radiation pattern," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 546-554, 2014.
doi:10.1109/TAP.2013.2290308

20. Iyer, A. K. and G. V. Eleftheriades, "Free-space imaging beyond the diffraction limit using a Veselago-Pendry transmission-line metamaterial superlens," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1720-1727, 2009.
doi:10.1109/TAP.2009.2019890

21. Xu, H. X., G. M. Wang, M. Q. Qi, et al. "Metamaterial lens made of fully printed resonant-type negative-refractive index transmission lines," Appl. Phys. Lett., Vol. 102, 193502, 2013.
doi:10.1063/1.4804602

22. Caloz, C., "Dual Composite Right/Left-Handed (D-CRLH) transmission line metamaterial," IEEE Microw. Wirel. Compon. Lett., Vol. 16, 585-587, 2006.
doi:10.1109/LMWC.2006.884773

23. Wang, C., Y. R. Shi, S. Liu, et al. "Ultra-wideband bandpass filter using simplified dual composite right/left-handed transmission line structure," Microw. and Opt. Technol. Lett., Vol. 55, No. 5, 1165-1167, 2013.
doi:10.1002/mop.27508

24. Tang, W., X. He, T. Pan, and Y. L. Chow, "Synthetic asymptote formulas of equivalent circuit components of square spiral inductors," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 215-226, 2006.
doi:10.1163/156939306775777206

25. Chow, Y. L. and W. C. Tang, "Development of CAD formulas of integrated circuit componentsfuzzy EM formulation followed by rigorous derivation," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 8, 1097-1119, 2001.
doi:10.1163/156939301X00445