Vol. 73
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-09-05
Free Space Radiation Pattern Reconstruction from Non-Anechoic Data Using the 3D Impulse Response of the Environment
By
Progress In Electromagnetics Research M, Vol. 73, 37-46, 2018
Abstract
Using impulse response with a 3D algorithm is a novel free-space radiation pattern reconstruction technique with accuracy greater than 1 dB in all antenna under test (AUT) azimuth and elevation angle orientations inside a non-anechoic environment. A quantitative comparison between impulse response with a 3D algorithm and impulse response with 2D, a previous technique, is performed using quantifiers. Benefits of the proposed 3D free-space radiation pattern reconstruction algorithm are single-frequency characterization and reuse of the 3D impulse response of the environment.
Citation
Cesar Segura, Wonil Cho, Junghwan Jeon, and Jinhwan Koh, "Free Space Radiation Pattern Reconstruction from Non-Anechoic Data Using the 3D Impulse Response of the Environment," Progress In Electromagnetics Research M, Vol. 73, 37-46, 2018.
doi:10.2528/PIERM18031001
References

1. Mahafza, B., "Radar antennas," Radar Systems Analysis and Design Using MATLAB, 339-368, Chapman & Hall/CRC, 2000.

2. Koh, J., "Free-space radiation pattern reconstruction from non-anechoic measurements using an impulse response of the environment," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, Feb. 2012.

3. Loredo, S., M. R. Pino, F. L.-Heras, and T. K. Sarkar, "Echo identification and cancellation techniques for antenna measurement in non-anechoic test sites," IEEE Antennas & Propagation Magazine, Vol. 46, No. 1, 100-107, Feb. 2004.
doi:10.1109/MAP.2004.1296154

4. Fourestie, B., Z. Altman, and M. Kanda, "Anechoic chamber evaluation using the matrix pencil method," IEEE Transactions on Electromagnetic Compatibility, Vol. 41, No. 3, 169-174, Aug. 1999.
doi:10.1109/15.784150

5. Fourestie, B., Z. Altman, and M. Kanda, "Efficient detection of resonances in anechoic chambers using the matrix pencil method," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, No. 1, 1-5, Feb. 2000.
doi:10.1109/15.831699

6. Bruns, C. and R. Vahldieck, "A closer look at reverberation chambers — 3-D simulation and experimental verification," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 3, Aug. 2005.
doi:10.1109/TEMC.2005.850677

7. Black, D. and E. Joy, "Test zone field compensation," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 4, Apr. 1995.
doi:10.1109/8.376033

8. Pereira, J. and A. Anderson, "New procedure for near-field measurements of microwave antennas without anechoic environments," IEE Proceedings, Vol. 131, No. 6, Dec. 1984.

9. Punnoose, R. and D. Counsil, "Time reversal signal processing for communication,", SANDIA REPORT SAND 2011-7050, Sandia National Laboratories, Sep. 2011.

10. Fouristie, B. and Z. Altman, "Gabor schemes for analyzing antenna measurements," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 9, Sep. 2001.

11. Kilundzija, B., J. Ognjanovic, and T. Sarkar, Wipl: Electromagnetic Modeling of Composite Wire and Plate Structures: Software and User’s Manual, Artech House, 1995.