Vol. 68
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-09
Semi-Analytical Model for Skewed Magnet Axial Flux Machine
By
Progress In Electromagnetics Research M, Vol. 68, 109-117, 2018
Abstract
High power density and torque capability are distinguished features of slotted axial flux permanent magnet machine. However, due to alternate placement of slot and teeth, the airgap permeance and airgap magnetic energy vary with angular position. Even in absence of current excitation, the magnetic variation with position results in cogging torque. This torque produces several undesirable phenomena such as mechanical vibration, acoustic noise, torque ripples, voltage ripples and speed ripple in machine performance. The severity is high for low speed, light load, and direct drive applications. Various design modifications such as slot skewing, magnet skewing, axillary slots, optimization of pole pitch to pole arc ratio and many more are reported for cogging torque mitigation. Any of these design modifications adversely affects the machine performance in terms of no load magnetic field distribution, linkage flux, and induced emf. In this paper, the effect of magnet skewing is investigated for dual-rotor permanent magnet axial flux machine. The analytical model is developed for the determination of magnetic field distribution at no load. Three different types of open slots stators viz. type 1: trapezoidal Slot with trapezoidal teeth, type 2: Parallel slot with trapezoidal teeth, and type 3: trapezoidal slot with parallel teeth are used for the investigation of air-gap magnetic field density and cogging torque produced in machine. The analytically obtained results are compared with finite element analysis (FEA) for the validation.
Citation
Md Motiur Reza Rakesh Kumar Srivastava , "Semi-Analytical Model for Skewed Magnet Axial Flux Machine," Progress In Electromagnetics Research M, Vol. 68, 109-117, 2018.
doi:10.2528/PIERM18031204
http://www.jpier.org/PIERM/pier.php?paper=18031204
References

1. Zhu, Z. and D. Howe, "Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors," IEEE Transactions on Magnetics, Vol. 28, No. 2, 1371-1374, 1992.
doi:10.1109/20.123947

2. Wu, L., Z. Zhu, D. Staton, M. Popescu, and D. Hawkins, "Analytical cogging torque prediction for surface-mounted pm machines accounting for different slot sizes and uneven positions," 2011 IEEE International Electric Machines & Drives Conference (IEMDC), 1322-1327, IEEE, 2011.
doi:10.1109/IEMDC.2011.5994797

3. Wang, D., X. Wang, D. Qiao, Y. Pei, and S.-Y. Jung, "Reducing cogging torque in surface-mounted permanent-magnet motors by nonuniformly distributed teeth method," IEEE Transactions on Magnetics, Vol. 47, No. 9, 2231-2239, 2011.
doi:10.1109/TMAG.2011.2144612

4. Aydin, M., Z. Zhu, T. Lipo, and D. Howe, "Minimization of cogging torque in axial-flux permanent-magnet machines: Design concepts," IEEE Transactions on Magnetics, Vol. 43, No. 9, 3614-3622, 2007.
doi:10.1109/TMAG.2007.902818

5. González, D. A., J. A. Tapia, and A. L. Bettancourt, "Design consideration to reduce cogging torque in axial flux permanent-magnet machines," IEEE Transactions on Magnetics, Vol. 43, No. 8, 3435-3440, 2007.
doi:10.1109/TMAG.2007.899349

6. Zhu, Z. and D. Howe, "Instantaneous magnetic field distribution in brushless permanent magnet dc motors. iii. Effect of stator slotting," IEEE Transactions on Magnetics, Vol. 29, No. 1, 143-151, 1993.
doi:10.1109/20.195559

7. Zhu, Z. and D. Howe, "Instantaneous magnetic field distribution in permanent magnet brushless dc motors. iv. Magnetic field on load," IEEE Transactions on Magnetics, Vol. 29, No. 1, 152-158, 1993.
doi:10.1109/20.195560

8. Zarko, D., D. Ban, and T. A. Lipo, "Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance," IEEE Transactions on Magnetics, Vol. 42, No. 7, 1828-1837, 2006.
doi:10.1109/TMAG.2006.874594

9. Zarko, D., D. Ban, and T. A. Lipo, "Analytical solution for cogging torque in surface permanent-magnet motors using conformal mapping," IEEE Transactions on Magnetics, Vol. 44, No. 1, 52-65, 2008.
doi:10.1109/TMAG.2007.908652

10. Dubas, F. and C. Espanet, "Analytical solution of the magnetic field in permanent-magnet motors taking into account slotting effect: No-load vector potential and flux density calculation," IEEE Transactions on Magnetics, Vol. 45, No. 5, 2097-2109, 2009.
doi:10.1109/TMAG.2009.2013245

11. Lubin, T., S. Mezani, and A. Rezzoug, "2-d exact analytical model for surface-mounted permanent-magnet motors with semi-closed slots," IEEE Transactions on Magnetics, Vol. 47, No. 2, 479-492, 2011.
doi:10.1109/TMAG.2010.2095874

12. Zhu, Z., L. Wu, and Z. Xia, "An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent-magnet machines," IEEE Transactions on Magnetics, Vol. 46, No. 4, 1100-1115, 2010.
doi:10.1109/TMAG.2009.2038153

13. Zhu, Z., D. Howe, E. Bolte, and B. Ackermann, "Instantaneous magnetic field distribution in brushless permanent magnet dc motors. i. Open-circuit field," IEEE Transactions on Magnetics, Vol. 29, No. 1, 124-135, 1993.
doi:10.1109/20.195557

14. Azzouzi, J., G. Barakat, and B. Dakyo, "Quasi-3-d analytical modeling of the magnetic field of an axial flux permanent-magnet synchronous machine," IEEE Transactions on Energy Conversion, Vol. 20, No. 4, 746-752, 2005.
doi:10.1109/TEC.2005.845538