Vol. 68
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-07
A Low Phase-Noise SIW Reflection Oscillator with Hexagonal Resonator
By
Progress In Electromagnetics Research M, Vol. 68, 99-107, 2018
Abstract
A low phase noise reflection oscillator using a hexagonal substrate integrated waveguide (SIW) resonator is proposed in this paper. The hexagonal SIW resonator, which can combine flexibility of a rectangular cavity and performance of a circular cavity, is convenient for oscillator design. Since any of the six sides of a hexagonal resonator can be utilized for coupling, the oscillator configuration is flexible and adaptable. A simplified generalised phase noise condition and its optimization approach are proposed for the low-phase noise oscillator design. Furthermore, a 10.4 GHz oscillator prototype was designed, fabricated and measured to validate the proposed optimization approach. The measured results show that this oscillator provides 11.3 dBm output power and possesses low phase noise of -127.2 dBc/Hz at 1 MHz offset from 10.4 GHz carrier frequency, which is suitable for low-cost application in microwave and millimeter-wave band.
Citation
Ziqiang Xu, Li Tan, Yuanxun Li, and Si Huang, "A Low Phase-Noise SIW Reflection Oscillator with Hexagonal Resonator," Progress In Electromagnetics Research M, Vol. 68, 99-107, 2018.
doi:10.2528/PIERM18031206
References

1. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves Antennas & Propagation, Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463        Google Scholar

2. Yang, Z., B. Luo, J. Dong, et al. "X-band low phase noise loop oscillator with differential outputs," Electronics Letters, Vol. 51, No. 13, 1005-1007, 2015.
doi:10.1049/el.2015.1151        Google Scholar

3. Yang, Z., B. Luo, J. Dong, et al. "Low phase noise oscillator based on quarter mode substrate integrated waveguide technique," IEICE Electronics Express, Vol. 12, No. 6, 20150046, 2015.
doi:10.1587/elex.12.20150046        Google Scholar

4. Yang, N., C. Caloz, and K. Wu, "TE210 mode balanced oscillator using substrate integrated waveguide resonator," IET Microwaves Antennas & Propagation, Vol. 5, No. 10, 1188-1194, 2011.
doi:10.1049/iet-map.2010.0589        Google Scholar

5. Yang, Z., B. Luo, J. Dong, et al. "X-band low-phase noise oscillator employing substrate integrated waveguide dual-mode filter," Electronics Letters, Vol. 51, No. 6, 494-495, 2015.
doi:10.1049/el.2014.4106        Google Scholar

6. Zhuang, C., J. Xu, F. Yu, et al. "Design of half mode substrate integrated waveguide Gunn oscillator," IEEE Transactions on Components Packaging & Manufacturing Technology, Vol. 1, No. 11, 1790-1794, 2011.
doi:10.1109/TCPMT.2011.2161581        Google Scholar

7. Adhikari, S., A. Ghiotto, and K. Wu, "Low-cost frequency modulated ferrite loaded SIW oscillator for high-power microwave transmitter," IEEE Microwave Symposium Digest, 1-3, 2014.        Google Scholar

8. Dancila, D., X. Rottenberg, H. A. C. Tilmans, et al. "Low phase noise oscillator at 60 GHz stabilized by a substrate integrated cavity resonator in LTCC," IEEE Microwave & Wireless Components Letters, Vol. 24, No. 12, 887-889, 2014.
doi:10.1109/LMWC.2014.2361645        Google Scholar

9. Chen, Z., W. Hong, and J. X. Chen, "High-Q planar active resonator based on substrate integrated waveguide technique," Electronics Letters, Vol. 48, No. 10, 575-577, 2012.
doi:10.1049/el.2012.0508        Google Scholar

10. Liu, Y., X. H. Tang, and T. Wu, "SIW-based low phase-noise millimeter-wave planar dual-port voltage-controlled oscillator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8-9, 1059-1069, 2012.
doi:10.1080/09205071.2012.710375        Google Scholar

11. Li, Z., Y. Liu, and J. Bao, "A phase noise reduction method in microwave oscillator using a high-Q transmission line loaded with active SIW resonator," Microwave & Optical Technology Letters, Vol. 58, No. 1, 221-225, 2016.
doi:10.1002/mop.29536        Google Scholar

12. Duong, T. V., W. Hong, V. H. Tran, et al. "An alternative technique to minimize the phase noise of X-band oscillators using improved group delay SIW filters," IEEE Microwave & Wireless Components Letters, Vol. 27, No. 2, 153-155, 2017.
doi:10.1109/LMWC.2017.2648120        Google Scholar

13. Huang, W., J. Zhou, and P. Chen, "An X-band low phase noise free-running oscillator using substrate integrated waveguide dual-mode bandpass filter with circular cavity," IEEE Microwave & Wireless Components Letters, Vol. 25, No. 1, 40-42, 2015.
doi:10.1109/LMWC.2014.2363690        Google Scholar

14. Wu, C. T. M., T. Itoh, A. K. Poddar, et al. "Active complementary coupled resonator for low phase noise X-band oscillator," IEEE European Frequency and Time Forum, 356-359, 2015.        Google Scholar

15. Lin, J., H. Zhang, W. Kang, et al. "Design of low phase noise substrate integrated waveguide oscillator based on complexquality factor (Qsc)," IEEE International Conference on Ubiquitous Wireless Broadband, 1-3, 2016.        Google Scholar

16. Chen, Z., W. Hong, J. X. Chen, et al. "Low-phase noise oscillator utilising high-Q active resonator based on substrate integrated waveguide technique," IET Microwaves Antennas & Propagation, Vol. 8, No. 3, 137-144, 2013.
doi:10.1049/iet-map.2013.0380        Google Scholar

17. Stornelli, V., L. Pantoli, and G. Leuzzi, "Active resonator for low-phase-noise tunable oscillators," Microwave & Optical Technology Letters, Vol. 58, No. 5, 1032-1035, 2016.
doi:10.1002/mop.29725        Google Scholar

18. Nick, M. and A. Mortazawi, "Low phase-noise planar oscillators based on low-noise active resonators," IEEE Transactions on Microwave Theory & Techniques, Vol. 58, No. 5, 1133-1139, 2010.
doi:10.1109/TMTT.2010.2045572        Google Scholar

19. Hamidkhani, M. and F. Mohajeri, "A low phase noise microwave oscillator based on a high Q SIW cavity CSRR band-pass filter," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 16, 2077-2087, 2016.
doi:10.1080/09205071.2016.1231088        Google Scholar

20. Park, W. Y. and S. Lim, "A low phase-noise microwave oscillator using a substrate integrated waveguide resonator based on complementary split ring resonator," IEEE Microwave Conference Proceedings, 371-374, 2011.        Google Scholar

21. Xu, Z. Q., Y. Shi, P. Wang, et al. "Substrate integrated waveguide (SIW) filter with hexagonal resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1521-1527, 2012.
doi:10.1080/09205071.2012.703951        Google Scholar

22. Li, Z., Y. Liu, and J. Bao, "A K-band push–push oscillator employing differential transmission line loaded with SIW cavity operated in TM110 mode," Microwave & Optical Technology Letters, Vol. 58, No. 5, 1217-1221, 2016.
doi:10.1002/mop.29774        Google Scholar

23. He, F. F., K.Wu, W. Hong, et al. "A low phase-noise VCO using an electronically tunable substrate integrated waveguide resonator," IEEE Transactions on Microwave Theory & Techniques, Vol. 58, No. 12, 3452-3458, 2010.        Google Scholar

24. Georgiadis, A., S. Via, A. Collado, et al. "Push-push oscillator design based on a substrate integrated waveguide (SIW) resonator," IEEE European Microwave Conference, 2009, EuMC 2009, 1231-1234, 2009.        Google Scholar

25. Dong, Y. and T. Itoh, "A dual-band oscillator with reconfigurable cavity-backed complementary split-ring resonator," IEEE Microwave Symposium Digest, 1-3, 2012.        Google Scholar

26. Wu, C. T. M., T. Itoh, A. K. Poddar, et al. "A C-band tunable oscillator based on complementary coupled resonator using substrate integrated waveguide cavity," IEEE Microwave Conference, 715-718, 2014.        Google Scholar

27. Zhang, R., J. Zhou, Z. Yu, and B. Yang, "A low phase noise feedback oscillator based on SIW bandpass response power divider," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 2, 153-155, Feb. 2018.
doi:10.1109/LMWC.2018.2791569        Google Scholar