Vol. 68
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-15
UWB-SP Standard Transducer Based on Microstrip Line
By
Progress In Electromagnetics Research M, Vol. 68, 153-161, 2018
Abstract
In this paper, an ultra-wideband standard transducer based on microstrip line is developed for the accurate measurement and metrology of UWB-SP. The transducer consists of a section of microstrip line and a section of coaxial line connected to microstrip line via an SMA connector. The beginning end of the transducer is chosen to receive the excitation signal, to expand the effective time window. Simulated results show that the waveform recovered by the transducer is almost coincident with the excited electric field waveform within the effective time window, and the upper frequency of the bandwidth is up to 3.5 GHz. The measured results show that the transducer can recover the waveform of the incident electric field very well, the sensitivity and time window can be calibrated readily and accurately by and the vector network analyzer as well as the UWB TEM cell. The experimental results are in agreement with the results from theoretical results and simulated results.
Citation
Jinhong Wei Youjie Yan Shoulong Zhang Jin Chen Zhanjun Liu , "UWB-SP Standard Transducer Based on Microstrip Line," Progress In Electromagnetics Research M, Vol. 68, 153-161, 2018.
doi:10.2528/PIERM18031706
http://www.jpier.org/PIERM/pier.php?paper=18031706
References

1. Prather, W. D., F. J. Agee, and C. E. Baum, "Ultra-wideband sources and antennas," Ultra-Wideband, Short-Pulse Electromagnetics, Vol. 4, 119-130, Springer, US, 2002.

2. Prather, W. D., C. E. Baum, and J. M. Lehr, "Ultra-wideband source and antenna research," IEEE Transactions on Plasma Science, Vol. 28, No. 5, 1624-1630, October 2000.
doi:10.1109/27.901245

3. Fedorov, V. M., E. F. Lebedev, V. Ye. Ostashev, V. P. Tarakanov, and A. V. Ul’yanov, "High power radiators for ultra-wideband electromagnetic impulses," Progress In Electromagnetics Research Symposium, 1476-1482, Moscow, Russia, August 19–23, 2012.

4. Baum, C. E., "From the electromagnetic pulse to high-power electromagnetics," IEEE Trans. Electromagnetic Compatibility, Vol. 80, No. 6, 789-817, 1992.

5. Barrett, W., "History of ultra wideband (UWB) radar & communication: Pioneers and innovators," Progress In Electromagnetics Symposium, 1-42, Cambridge, MA, July 2000.

6. Andrews, J. R., "UWB signal sources, antennas and propagation," IEEE Topical Conference on Wireless Communication Technology, 439-440, 2003.
doi:10.1109/WCT.2003.1321594

7. Olsen, S. L., "Asymptotic conical dipole D-dot transducer (ACD-S1(R)) development," EG&G Report, No. AFWL-TR-75-263, April 1976.

8. Shen, H. M. and R. W. King, "New sensors for measuring very short electromagnetic pulses," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 6, 838-846, 1990.
doi:10.1109/8.55580

9. Yao, L. J., et al., "Compensation of the offset in numerical integration of a D-dot sensor measurement," Proc. 3rd Asia-Pac. Conf. Antennas Propag., 898-901, Harbin, China, 2014.

10. Chen, J., "Ultra-wideband standard antenna for transient field measurement of short electromagnetic pulse," Proc. of the 2013 International Symposium on Electromagnetic Compatibility, 197-202, 2013.

11. Allen, O. E., D. A. Hill, and R. Arthur, "Time-domain antenna characterizations," IEEE Trans. Electromagnetic Compatibility, Vol. 35, No. 3, 339-34, 1993.
doi:10.1109/15.277308

12. Podosenov, S. A., "Linear two-wire transmission line coupling to an external electromagnetic field. Part II: Specific cases, experiment," IEEE Trans. Electromagnetic Compatibility, Vol. 37, No. 4, 566-574, 1995.
doi:10.1109/15.477341

13. Podosenov, S. A., "Linear two-wire transmission line coupling to an external electromagnetic field. Part I: Theory," IEEE Trans. Electromagnetic Compatibility, Vol. 37, No. 4, 559-566, 1995.
doi:10.1109/15.477341

14. Ari, N. and W. Blumer, "Analytic formulation of the response of a two-wire transmission line excited by a plane wave," IEEE Trans. Electromagnetic Compatibility, Vol. 30, No. 4, 437-448, 1988.
doi:10.1109/15.8757

15. Podosenov, S. A. and K. Yu. Sakharov, "Approximate calculation methods for pulse radiation of a TEM-horn array," IEEE Trans. Electromagnetic Compatibility, Vol. 43, No. 1, 67-74, 2001.
doi:10.1109/15.917941

16., , Microwave Studio (MWS) is a registered trademark of CST GmbH, Darmstadt, Germany.

17. Yan, Y. J. and X. L. Liu, "E-field generation setup for UWB-SP transducer calibration," 2012 Asia-Pacific Symposium on IEEE Electromagnetic Compatibility (APEMC), 541-544, 2012.
doi:10.1109/APEMC.2012.6237822

18., , IEEE Standard for Calibration of Electromagnetic Field Transducers and Probes, Excluding Antennas, from 9 kHz to 40 GHz, IEEE Std. 1309TM, 2005.

19. Bracewell, R. N. and R. N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York, 1986.