Vol. 70
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-04
Beamforming for Dual-Hop Satellite Communications Against Eavesdropping
By
Progress In Electromagnetics Research M, Vol. 70, 61-69, 2018
Abstract
This paper proposes a secure beamforming (BF) scheme for a dual-hop satellite communication system, where a satellite acts as a relay using amplify-and-forward (AF) protocol to assists signal transmission between the terrestrial source and destination, where the target user is intercepted by an eavesdropper (Eve) in the downlink transmission. By assuming that the satellite is deployed with multiple antenna feeds, we rst establish an optimization problem to minimize the on-board transmit power subject to the quality-of-service (QoS) and secrecy performance requirement of the destination. Then, based on the method of penalty function, we propose a secure BF scheme to obtain the optimal BF weight vector with analytical form. Finally, computer simulation results are given to demonstrate the e ectiveness and superiority of the proposed algorithm.
Citation
Chunyan Yin Min Lin Zhi Lin Xiangshuai Tao Athanasios Panagopoulos Jian Ouyang , "Beamforming for Dual-Hop Satellite Communications Against Eavesdropping," Progress In Electromagnetics Research M, Vol. 70, 61-69, 2018.
doi:10.2528/PIERM18041104
http://www.jpier.org/PIERM/pier.php?paper=18041104
References

1. Morabito, A. F., A. R. Lagana, and L. Di Donato, "Satellite multibeam coverage of earth: Innovative solutions and optimal synthesis of aperture fields," Progress In Electromagnetics Research, Vol. 156, 135-144, 2016.
doi:10.2528/PIER16061505

2. An, K., M. Lin, T. Liang, J. Wang, J. Wang, Y. Huang, and A. Lee Swindlehurst, "Performance analysis of multi-antenna hybrid satellite-terrestrial relay networks in the presence of interference," IEEE Trans. Commun., Vol. 63, No. 11, 4390-4404, Nov. 2015.
doi:10.1109/TCOMM.2015.2474865

3. An, K., M. Lin, W.-P. Zhu, and Y. Huang, "Outage performance of cognitive hybrid satellite terrestrial networks with interference constraint," IEEE Trans. Veh. Technol., Vol. 65, No. 11, 9397-9404, Nov. 2016.
doi:10.1109/TVT.2016.2519893

4. Wu, Z., F. Jin, J. Luo, Y. Fu, J. Shan, and G. Hu, "A graph-based satellite handover framework for LEO satellite communication networks," IEEE Commun. Lett., Vol. 20, No. 8, Aug. 2016.

5. Kourogiorgas, C., N. Lyras, A. D. Panagopoulos, D. Tarchi, A. V. Coralli, A. Ugolini, G. Colavolpe, and P.-D. Arapoglou, "Capacity statistics evaluation for next generation broadband MEO satellite systems," IEEE Trans. Aerosp. Electron. Syst., Vol. 53, 2344-2358, Apr. 2017.
doi:10.1109/TAES.2017.2693018

6. Vidal, O., et al., "Next generation high throughput satellite system," Proc. IEEE 1st AESS ESTEL, 1-7, 2012.

7. Ajibesin, A. A., F. O. Bankole, and A. C. Odinma, "A review of next generation satellite networks: Trends and technical issues ," AFRICON, 1-7, Nairobi, 2009.

8. Evans, B., Satellite Communication Systems, Inst. Eng. Technol., London, U.K., 1999.
doi:10.1049/PBTE038E

9. Lei, J., Z. Han, M. A. V´azquez-Castro, and A. Hjoungnes, "Secure satellite communication systems design with individual secrecy rate constraints," IEEE Trans. Inf. Forens. Security, Vol. 6, No. 3, 661-671, Sep. 2011.
doi:10.1109/TIFS.2011.2148716

10. Lin, M., L. Yang, W. P. Zhu, and M. Li, "An open-loop adaptive space-time transmit scheme for correlated fading channels," IEEE J. Sel. Topics Signal Process., Vol. 2, No. 2, 147-158, Apr. 2008.
doi:10.1109/JSTSP.2008.922482

11. Li, Y., Y. Gu, Z.-G. Shi, and K. S. Chen, "Robust adaptive beamforming based on particle filter with noise unknown," Progress In Electromagnetics Research, Vol. 90, 151-169, 2009.
doi:10.2528/PIER09010302

12. Lin, M., J. Ouyang, and W.-P. Zhu, "Joint beamforming and power control for device-to-device communications underlaying cellular networks," IEEE J. Sel. Areas Commun., Vol. 34, 138-150, Jan. 2016.
doi:10.1109/JSAC.2015.2452491

13. Gu, Y., Z.-G. Shi, K. S. Chen, and Y. Li, "Robust adaptive beamforming for steering vector uncertainties based on equivalent DOAs method," Progress In Electromagnetics Research, Vol. 79, 277-290, 2008.
doi:10.2528/PIER07102202

14. Havary-Nassab, V., S. Shahbazpanahi, and A. Grami, "Joint receive-transmit beamforming for multi-antenna relaying schemes," IEEE Trans. Signal Process., Vol. 58, No. 3, 1238-1250, Mar. 2010.
doi:10.1109/TSP.2009.2026067

15. Dong, L., Z. Han, A. P. Petropulu, and H. V. Poor, "Improving wireless physical layer security via cooperating relays," IEEE Trans. Signal Process., Vol. 58, No. 3, 1875-1888, Mar. 2010.
doi:10.1109/TSP.2009.2038412

16. Panduro, M. A. and C. del Rio-Bocio, "Beam-forming networks for scannable multi-beam antenna arrays using CORPS and differential evolution," Proc. Eur. Conf. Antennas Propag., 3109-3113, Mar. 2009.

17. Jiang, M., Z. N. Chen, Y. Zhang, W. Hong, and X. Xuan, "Metamaterial-based thin planar lens antenna for spatial beamforming and multibeam massive MIMO," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 464-472, Feb. 2017.
doi:10.1109/TAP.2016.2631589

18. Betancourt, D. and C. del Rio Bocio, "A novel methodology to feed phased array antennas," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2489-2494, Sep. 2007.
doi:10.1109/TAP.2007.904133

19. Alvarado, L., M. Mendoza, and C. Bocio, "A multi-beam planar antenna array using CORPS and evolutionary optimization," APSURSI, 930-933, Jul. 2011.

20. Ibarra, M., A. G. Andrade, M. A. Panduro, and A. L. Mendez, "Design of antenna arrays for isoflux radiation in satellite systems," Proc. 33th Int. Conf. IEEE Perform. Comput. Commun., 2014.

21. Ibarra, M., A. Reyna, M. A. Panduro, and C. del Rio-Bocio, "Design of aperiodic planar arrays for desirable isoflux radiation in GEO satellites," APURSI, 3003-3006, Jul. 2011.

22. Zheng, G., P. D. Arapoglou, and B. Ottersten, "Physical layer security in multibeam satellite Physical layer security in multibeam satellite," IEEE Trans. Wireless Commun., Vol. 11, No. 2, 852-863, Feb. 2012.
doi:10.1109/TWC.2011.120911.111460

23. An, K., M. Lin, J. Ouyang, and W.-P. Zhu, "Secure transmission in cognitive satellite terrestrial networks," IEEE J. Sel. Areas Commun., Vol. 34, No. 11, 3025-3037, Oct. 2016.
doi:10.1109/JSAC.2016.2615261

24. Bhatnagar, M. R., "Performance evaluation of decode-and-forward satellite relaying," IEEE Trans. Veh. Tech., Vol. 64, No. 10, 4827-4833, Oct. 2015.
doi:10.1109/TVT.2014.2373389

25. Miridakis, N. I., D. D. Vergados, and A. Michalas, "Dual-hop communication over a satellite relay and shadowed Rician channels," IEEE Trans. Veh. Tech., Vol. 64, No. 9, 4031-4040, Sep. 2015.
doi:10.1109/TVT.2014.2361832

26. Guidolin, F., M. Nekovee, L. Badia, and M. Zorzi, "A cooperative scheduling algorithm for the coexistence of fixed satellite services and 5G cellular network," Proc. IEEE Int. Conf. Commun., 1322-1327, Jun. 2015.

27. Panagopoulos, A. D., P.-D. M. Arapoglou, and P. G. Cottis, "Satellite Communications at Ku, Ka and V bands: Propagation impairments and mitigation techniques," IEEE Commun. Surveys Tutorials, Vol. 6, No. 3, 2-14, Oct. 2004.
doi:10.1109/COMST.2004.5342290

28. Liang, Y., et al., "Compound wiretap channels," EURASIP J. Wireless Commun. Netw., Vol. 1, 1-12, 2009.

29. Nocedal, J. and S. Wright, Numerical Optimization, Springer, New York, 2008.

30. Eisen, M., et al., "Decentralized quasi-newton methods," IEEE Trans. Signal Process., Vol. 65, No. 10, 2613-2628, May 2017.
doi:10.1109/TSP.2017.2666776