1. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microwave Magazine, Vol. 12, No. 7, 78-94, 2011.
doi:10.1109/MMM.2011.942702
2. Semnani, A., I. T. Rekanos, M. Kamyab, and M. Moghaddam, "Solving inverse scattering problems based on truncated cosine Fourier and cubic B-spline expansions," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5914-5923, 2012.
doi:10.1109/TAP.2012.2214751
3. Shamsaddini, M., A. Tavakoli, and P. Dehkhoda, "Inverse electromagnetic scattering of a dielectric cylinder buried below a slightly rough surface using a new intelligence approach," 23rd Iranian Conference on Electrical Engineering (ICEE), 391-396, 2015.
4. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, No. 4, 591-595, 2001.
doi:10.1088/0266-5611/17/4/301
5. Bao, G., J. Lin, and Sé. M. Mefire, "Numerical reconstruction of electromagnetic inclusions in three dimensions," SIAM Journal on Imaging Sciences, Vol. 7, No. 1, 558-577, 2014.
doi:10.1137/130937640
6. Chen, X. and K. Agarwal, "MUSIC algorithm for two-dimensional inverse problems with special characteristics of cylinders," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1808-1812, 2008.
doi:10.1109/TAP.2008.923333
7. Agarwal, K. and X. Chen, "Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3217-3223, 2008.
doi:10.1109/TAP.2008.929434
8. Joh, Y. D. and W. K. Park, "Structural behavior of the MUSIC-type algorithm for imaging perfectly conducting cracks," Progress In Electromagnetics Research, Vol. 138, 211-226, 2013.
doi:10.2528/PIER13013104
9. Joh, Y. D., Y. M. Kwon, and W. K. Park, "MUSIC-type imaging of perfectly conducting cracks in limited-view inverse scattering problems," Applied Mathematics and Computation, Vol. 240, 273-280, 2014.
doi:10.1016/j.amc.2014.04.097
10. Park, W. K., "Properties of MUSIC-type algorithm for imaging of thin dielectric inhomogeneity in limited-view inverse scattering problem," Progress In Electromagnetics Research M, Vol. 37, 109-118, 2014.
doi:10.2528/PIERM14050403
11. Ahn, C. Y., K. Jeon, and W. K. Park, "Analysis of MUSIC-type imaging functional for single, thin electromagnetic inhomogeneity in limited-view inverse scattering problem," Journal of Computational Physics, Vol. 291, 198-217, 2015.
doi:10.1016/j.jcp.2015.03.018
12. Ciuonzo, D., G. Romano, and R. Solimene, "Performance analysis of time-reversal MUSIC," IEEE Transactions on Signal Processing, Vol. 63, No. 10, 2650-2662, 2015.
doi:10.1109/TSP.2015.2417507
13. Devaney, A. J., "Time reversal imaging of obscured targets from multistatic data," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1600-1610, 2005.
doi:10.1109/TAP.2005.846723
14. Gruber, F. K., E. A. Marengo, and A. J. Devaney, "Time-reversal imaging with multiple signal classification considering multiple scattering between the targets," The Journal of the Acoustical Society of America, Vol. 115, No. 6, 3042-3047, 2004.
doi:10.1121/1.1738451
15. Marengo, E. A., F. K. Gruber, and F. Simonetti, "Time-reversal MUSIC imaging of extended targets," IEEE Transactions on Image Processing, Vol. 16, No. 8, 1967-1984, 2007.
doi:10.1109/TIP.2007.899193
16. Ammari, H., E. Iakovleva, and D. Lesselier, "Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency," SIAM Journal on Scientific Computing, Vol. 27, No. 1, 130-158, 2005.
doi:10.1137/040612518
17. Ammari, H., E. Iakovleva, D. Lesselier, and G. Perrusson, "MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions," SIAM Journal on Scientific Computing, Vol. 29, No. 2, 674-709, 2007.
doi:10.1137/050640655
18. Rodeghiero, G., M. Lambert, D. Lesselier, and P. P. Ding, "Electromagnetic MUSIC imaging and 3-D retrieval of defects in anisotropic, multi-layered composite materials," The 9th International Conference on Computational Physics (ICCP9), A05-05, 2015.
19. Shirmehenji, F., A. Zeidaabadi Nezhad, and Z. H. Firouzeh, "Object locating in anisotropic dielectric background using MUSIC algorithm," 2016 8th International Symposium on Telecommunications (IST), 396-400, 2016.
doi:10.1109/ISTEL.2016.7881849
20. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/0470020466
21. Liu, L., L. B. Kong, G. Q. Lin, S. Matitsine, and C. R. Deng, "Microwave permeability of ferromagnetic microwires composites/metamaterials and potential applications," IEEE Transactions on Magnetics, Vol. 44, No. 11, 3119-3122, 2008.
doi:10.1109/TMAG.2008.2001628
22. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.
23. Collin, R. E., Foundations for Microwave Engineering, John Wiley & Sons, 2007.
24. Herczyński, A., "Bound charges and currents," American Journal of Physics, Vol. 81, No. 3, 202-205, 2013.
doi:10.1119/1.4773441
25. Ammari, H. and H. Kang, Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory, Vol. 162, 2007.
26. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604
27. Ball, J. E., "Low signal-to-noise ratio radar target detection using linear support vector machines (L-SVM)," 2014 IEEE Radar Conference, 1291-1294, 2014.
doi:10.1109/RADAR.2014.6875798
28. Chevalier, P., A. Ferrol, and L. Albera, "High-resolution direction finding from higher order statistics: The 2rmq-MUSIC algorithm," IEEE Transactions on Signal Processing, Vol. 54, No. 8, 2986-2997, 2006.
doi:10.1109/TSP.2006.877661
29. Dobrzański, L. A., M. Drak, and B. Zibowicz, "Materials with specific magnetic properties," Journal of Achievements in Materials and Manufacturing Engineering, Vol. 17, No. 1-2, 37-40, 2006.