Vol. 85
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-07-06
Object Locating of Electromagnetic Inclusions in Anisotropic Permeable Background Using MUSIC Algorithm
By
Progress In Electromagnetics Research C, Vol. 85, 77-89, 2018
Abstract
In this paper, a new formulation is proposed to solve an inverse scattering problem for locating isolated inclusions within a homogeneous noise-free and noisy biaxial anisotropic permeable background using MUltiple SIgnal Classi cation (MUSIC) algorithm. Locations of the dielectric, permeable, lossless and lossy electromagnetic or both dielectric and permeable inclusions with arbitrary ellipsoidal shapes in a noise-free or noisy background can be restored. The numerical study of different inclusions is illustrated, and accuracy of the method is investigated. The proposed formulation is also investigated for extended inclusions in both noise-free and noisy backgrounds.
Citation
Faezeh Shirmehenji, Abolghasem Zeidaabadi-Nezhad, and Zaker Hossein Firouzeh, "Object Locating of Electromagnetic Inclusions in Anisotropic Permeable Background Using MUSIC Algorithm," Progress In Electromagnetics Research C, Vol. 85, 77-89, 2018.
doi:10.2528/PIERC18041908
References

1. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microwave Magazine, Vol. 12, No. 7, 78-94, 2011.
doi:10.1109/MMM.2011.942702

2. Semnani, A., I. T. Rekanos, M. Kamyab, and M. Moghaddam, "Solving inverse scattering problems based on truncated cosine Fourier and cubic B-spline expansions," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5914-5923, 2012.
doi:10.1109/TAP.2012.2214751

3. Shamsaddini, M., A. Tavakoli, and P. Dehkhoda, "Inverse electromagnetic scattering of a dielectric cylinder buried below a slightly rough surface using a new intelligence approach," 23rd Iranian Conference on Electrical Engineering (ICEE), 391-396, 2015.

4. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, No. 4, 591-595, 2001.
doi:10.1088/0266-5611/17/4/301

5. Bao, G., J. Lin, and Sé. M. Mefire, "Numerical reconstruction of electromagnetic inclusions in three dimensions," SIAM Journal on Imaging Sciences, Vol. 7, No. 1, 558-577, 2014.
doi:10.1137/130937640

6. Chen, X. and K. Agarwal, "MUSIC algorithm for two-dimensional inverse problems with special characteristics of cylinders," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1808-1812, 2008.
doi:10.1109/TAP.2008.923333

7. Agarwal, K. and X. Chen, "Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3217-3223, 2008.
doi:10.1109/TAP.2008.929434

8. Joh, Y. D. and W. K. Park, "Structural behavior of the MUSIC-type algorithm for imaging perfectly conducting cracks," Progress In Electromagnetics Research, Vol. 138, 211-226, 2013.
doi:10.2528/PIER13013104

9. Joh, Y. D., Y. M. Kwon, and W. K. Park, "MUSIC-type imaging of perfectly conducting cracks in limited-view inverse scattering problems," Applied Mathematics and Computation, Vol. 240, 273-280, 2014.
doi:10.1016/j.amc.2014.04.097

10. Park, W. K., "Properties of MUSIC-type algorithm for imaging of thin dielectric inhomogeneity in limited-view inverse scattering problem," Progress In Electromagnetics Research M, Vol. 37, 109-118, 2014.
doi:10.2528/PIERM14050403

11. Ahn, C. Y., K. Jeon, and W. K. Park, "Analysis of MUSIC-type imaging functional for single, thin electromagnetic inhomogeneity in limited-view inverse scattering problem," Journal of Computational Physics, Vol. 291, 198-217, 2015.
doi:10.1016/j.jcp.2015.03.018

12. Ciuonzo, D., G. Romano, and R. Solimene, "Performance analysis of time-reversal MUSIC," IEEE Transactions on Signal Processing, Vol. 63, No. 10, 2650-2662, 2015.
doi:10.1109/TSP.2015.2417507

13. Devaney, A. J., "Time reversal imaging of obscured targets from multistatic data," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1600-1610, 2005.
doi:10.1109/TAP.2005.846723

14. Gruber, F. K., E. A. Marengo, and A. J. Devaney, "Time-reversal imaging with multiple signal classification considering multiple scattering between the targets," The Journal of the Acoustical Society of America, Vol. 115, No. 6, 3042-3047, 2004.
doi:10.1121/1.1738451

15. Marengo, E. A., F. K. Gruber, and F. Simonetti, "Time-reversal MUSIC imaging of extended targets," IEEE Transactions on Image Processing, Vol. 16, No. 8, 1967-1984, 2007.
doi:10.1109/TIP.2007.899193

16. Ammari, H., E. Iakovleva, and D. Lesselier, "Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency," SIAM Journal on Scientific Computing, Vol. 27, No. 1, 130-158, 2005.
doi:10.1137/040612518

17. Ammari, H., E. Iakovleva, D. Lesselier, and G. Perrusson, "MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions," SIAM Journal on Scientific Computing, Vol. 29, No. 2, 674-709, 2007.
doi:10.1137/050640655

18. Rodeghiero, G., M. Lambert, D. Lesselier, and P. P. Ding, "Electromagnetic MUSIC imaging and 3-D retrieval of defects in anisotropic, multi-layered composite materials," The 9th International Conference on Computational Physics (ICCP9), A05-05, 2015.

19. Shirmehenji, F., A. Zeidaabadi Nezhad, and Z. H. Firouzeh, "Object locating in anisotropic dielectric background using MUSIC algorithm," 2016 8th International Symposium on Telecommunications (IST), 396-400, 2016.
doi:10.1109/ISTEL.2016.7881849

20. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/0470020466

21. Liu, L., L. B. Kong, G. Q. Lin, S. Matitsine, and C. R. Deng, "Microwave permeability of ferromagnetic microwires composites/metamaterials and potential applications," IEEE Transactions on Magnetics, Vol. 44, No. 11, 3119-3122, 2008.
doi:10.1109/TMAG.2008.2001628

22. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.

23. Collin, R. E., Foundations for Microwave Engineering, John Wiley & Sons, 2007.

24. Herczyński, A., "Bound charges and currents," American Journal of Physics, Vol. 81, No. 3, 202-205, 2013.
doi:10.1119/1.4773441

25. Ammari, H. and H. Kang, Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory, Vol. 162, 2007.

26. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604

27. Ball, J. E., "Low signal-to-noise ratio radar target detection using linear support vector machines (L-SVM)," 2014 IEEE Radar Conference, 1291-1294, 2014.
doi:10.1109/RADAR.2014.6875798

28. Chevalier, P., A. Ferrol, and L. Albera, "High-resolution direction finding from higher order statistics: The 2rmq-MUSIC algorithm," IEEE Transactions on Signal Processing, Vol. 54, No. 8, 2986-2997, 2006.
doi:10.1109/TSP.2006.877661

29. Dobrzański, L. A., M. Drak, and B. Zibowicz, "Materials with specific magnetic properties," Journal of Achievements in Materials and Manufacturing Engineering, Vol. 17, No. 1-2, 37-40, 2006.