1. Keller, J. B., "Diffraction of a convex cylinder," IEEE Trans. Antennas Propag., Vol. 4, No. 3, 312-321, 1956.
doi:10.1109/TAP.1956.1144427 Google Scholar
2. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, No. 2, 116-130, 1962.
doi:10.1364/JOSA.52.000116 Google Scholar
3. Wu, T. T., "High frequency scattering," Phys. Rev., Vol. 104, 1201-1212, Dec. 1956.
doi:10.1103/PhysRev.104.1201 Google Scholar
4. Honl, H., A. W. Maue, and K. Westpfahl, Theory of Diffraction, Springer-Verlag, 1961.
5. Pathak, P. H., W. D. Burnside, and R. J. Marhefka, "A uniform gtd analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Trans. Antennas Propag., Vol. 28, No. 5, 631-642, 1980.
doi:10.1109/TAP.1980.1142396 Google Scholar
6. Hussar, P. and R. Albus, "On the asymptotic frequency behavior of uniform GTD in the shadow region of a smooth convex surface," IEEE Trans. Antennas Propag., Vol. 39, No. 12, 1672-1680, 1991.
doi:10.1109/8.121587 Google Scholar
7. Paknys, R., "On the accuracy of the UTD for the scattering by a cylinder," IEEE Trans. Antennas Propag., Vol. 42, No. 5, 757-760, 1994.
doi:10.1109/8.299580 Google Scholar
8. Yaghjian, A. D., R. A. Shore, and M. B. Woodworth, "Shadow boundary incremental length diffraction coefficients for perfectly conducting smooth, convex surfaces," Radio Sci., Vol. 31, No. 6, 1681-1695, Nov.-Dec. 1996.
doi:10.1029/96RS02276 Google Scholar
9. Hansen, T. B. and R. A. Shore, "Incremental length diffraction coefficients for the shadow boundary of a convex cylinder ," IEEE Trans. Antennas Propag., Vol. 46, No. 10, 1458-1466, Oct. 1998.
doi:10.1109/8.725277 Google Scholar
10. Shore, R. A. and A. D. Yaghjian, "Shadow boundary incremental length diffraction coefficients applied to scattering from 3-D bodies," IEEE Trans. Antennas Propag., Vol. 49, No. 2, 200-210, Feb. 2001.
doi:10.1109/8.914277 Google Scholar
11. Kim, H. T. and N. Wang, "UTD solution for electromagnetic scattering by a circular cylinder with thin lossy coatings," IEEE Trans. Antennas Propag., Vol. 37, No. 11, 1463-1472, 1989.
doi:10.1109/8.43566 Google Scholar
12. Brick, Y., V. Lomakin, and A. Boag, "Fast direct solver for essentially convex scatterers using multilevel non-uniform grids," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4314-4324, 2014.
doi:10.1109/TAP.2014.2327651 Google Scholar
13. Syed, H. H. and J. L. Volakis, "High-frequency scattering by a smooth coated cylinder simulated with generalized impedance boundary conditions ," Radio Sci., Vol. 26, No. 5, 1305-1314, 1991.
doi:10.1029/91RS00999 Google Scholar
14. Chen, X., S. Y. He, D. F. Yu, H. C. Yin, W. D. Hu, and G. Q. Zhu, "Geodesic computation on NURBS surfaces for UTD analysis," IEEE Antenn. Wirel. Pr., Vol. 12, 194-197, 2013.
doi:10.1109/LAWP.2013.2245291 Google Scholar
15. Tokgoz, C. and R. J. Marhefka, "A UTD based asymptotic solution for the surface magnetic field on a source excited circular cylinder with an impedance boundary condition," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1750-1757, 2006.
doi:10.1109/TAP.2006.875490 Google Scholar
16. Ruan, Y. C., X. Y. Zhou, J. Y. Chin, T. J. Cui, Y. B. Tao, and H. Lin, "The UTD analysis to EM scattering by arbitrarily convex objects using ray tracing of creeping waves on numerical meshes," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, 2008. Google Scholar
17. Fock, V. A., Electromagnetic Diffraction and Propagation Problems, Pergamon, 1965.
18. Hussar, P. E., "A uniform GTD treatment of surface diffraction by impedance and coated cylinders," IEEE Trans. Antennas Propag., Vol. 46, No. 7, 998-1008, 1998.
doi:10.1109/8.704801 Google Scholar
19. Wu, Y., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308 Google Scholar
20. Wu, Y. M., L. J. Jiang, and W. C. Chew, "Computing highly oscillatory physical optics integral on the polygonal domain by an efficient numerical steepest descent path method," J. Comput. Phys., Vol. 236, 408-425, Mar. 2013.
doi:10.1016/j.jcp.2012.10.052 Google Scholar
21. Wu, Y. M., L. J. Jiang, W. E. I. Sha, and W. C. Chew, "The numerical steepest descent path method for calculating physical optics integrals on smooth conducting surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4183-4193, Aug. 2013.
doi:10.1109/TAP.2013.2259788 Google Scholar
22. Wu, Y. M., L. J. Jiang, W. C. Chew, and Y. Q. Jin, "The contour deformation method for calculating the high-frequency scattered field by the Fock current on the surface of the 3-D convex cylinder," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2180-2190, 2015.
doi:10.1109/TAP.2015.2407411 Google Scholar
23. Wu, Y.M., W. C. Chew, Y. Q. Jin, L. J. Jiang, H. Ye, and W. E. I. Sha, "A frequency-independent method for computing the physical optics-based electromagnetic fields scattered from a hyperbolic surface," IEEE Trans. Antennas Propag., Vol. 64, No. 4, 1546-1552, 2016.
doi:10.1109/TAP.2016.2526065 Google Scholar
24. Pearson, L. W., "A scheme for automatic computation of fock-type integrals," IEEE Trans. Antennas Propag., Vol. 35, No. 10, 1111-1118, 1987.
doi:10.1109/TAP.1987.1143985 Google Scholar
25. Aguilar, A. G., P. H. Pathak, and M. Sierra-Perez, "A canonical UTD solution for electromagnetic scattering by an electrically large impedance circular cylinder illuminated by an obliquely incident plane wave," IEEE Trans. Antennas Propag., Vol. 61, No. 10, 5144-5154, 2013.
doi:10.1109/TAP.2013.2274691 Google Scholar
26. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
27. Jin, J. M., Theory and Computation of Electromagnetic Fields, Wiley, 2010.
doi:10.1002/9780470874257
28. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651 Google Scholar
29. Senior, T. B. A., "Approximate boundary conditions," IEEE Trans. Antennas Propag., Vol. 29, No. 5, 826-829, 1981.
doi:10.1109/TAP.1981.1142657 Google Scholar
30. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, Institution of Engineering and Technology, 1995.
doi:10.1049/PBEW041E