Vol. 70
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-13
An Alternation Diffusion LMS Estimation Strategy Over Wireless Sensor Network
By
Progress In Electromagnetics Research M, Vol. 70, 135-143, 2018
Abstract
This paper presents a distributed estimation strategy called alternation diffusion LMS estimation (AD-LMS) to estimate an unknown parameter of interests from noisy measurement over wireless sensor network. It is useful in the wireless sensor networks where robustness and low consumption are desired features. Diffusion LMS is introduced in this estimation strategy to improve the performance and reduce the communication burden. With the proposed strategy, whether each node distributes its estimation depends on an alternative parameter. The node only exchanges its estimation when the instant time meets some conditions. Next, each node combines the estimations of neighbors with its own estimation using combination coefficients upon the topology of the network. At last, the nodes update their estimations with a normalized LMS algorithm. The proposed AD-LMS strategy is compared to standard diffusion strategy. The results show that they achieve exactly the same coverage rate and nearly the network performance (network MSD and steady-state MSD) of standard diffusion strategy while reducing the communication burden significantly.
Citation
Lin Li Donghui Li , "An Alternation Diffusion LMS Estimation Strategy Over Wireless Sensor Network," Progress In Electromagnetics Research M, Vol. 70, 135-143, 2018.
doi:10.2528/PIERM18042302
http://www.jpier.org/PIERM/pier.php?paper=18042302
References

1. Rahman, M. U., "Performance analysis of MUSIC DOA algorithm estimation in multipath environment for automotive radars," International Journal of Applied Science & Engineering, Vol. 14, 125-132, 2016.

2. Abdolee, R. and B. Champagne, "Diffusion LMS strategies in sensor networks with noisy input data," IEEE/ACM Transactions on Networking, Vol. 24, 3-14, 2015.
doi:10.1109/TNET.2014.2350013

3. Lopes, C. G. and A. H. Sayed, "Incremental adaptive strategies over distributed networks," IEEE Transactions on Signal Processing, Vol. 55, 4064-4077, 2007.
doi:10.1109/TSP.2007.896034

4. Liu, Y., C. Li, W. K. S. Tang, and Z. Zhang, "Distributed estimation over complex networks," Information Sciences, Vol. 197, 91-104, 2012.
doi:10.1016/j.ins.2012.02.008

5. Arablouei, R., Y. F. Huang, S. Werner, and K. Dogancay, "Reduced-communication diffusion LMS strategy for adaptive distributed estimation," Signal Processing, Vol. 117, 355-361, 2014.
doi:10.1016/j.sigpro.2015.06.006

6. Sahoo, U. K., G. Panda, B. Mulgrew, and B. Majhi, "Robust incremental adaptive strategies for distributed networks to handle outliers in both input and desired data," Signal Processing, Vol. 96, 300-309, 2014.
doi:10.1016/j.sigpro.2013.09.006

7. Cattivelli, F. S. and A. H. Sayed, "Analysis of spatial and incremental LMS processing for distributed estimation," IEEE Transactions on Signal Processing, Vol. 59, 1465-1480, 2011.
doi:10.1109/TSP.2010.2100386

8. Lopes, C. G. and A. H. Sayed, "Diffusion least-mean squares over adaptive networks: Formulation and performance analysis," IEEE Transactions on Signal Processing, Vol. 56, 3122-3136, 2008.
doi:10.1109/TSP.2008.917383

9. Cattivelli, F. S. and A. H. Sayed, "Diffusion LMS strategies for distributed estimation," IEEE Transactions on Signal Processing, Vol. 58, 1035-1048, 2010.
doi:10.1109/TSP.2009.2033729

10. Chen, J. and A. H. Sayed, Diffusion Adaptation Strategies for Distributed Optimization and Learning over Networks, IEEE Press, 2012.

11. Fernandezbes, J., J. A. Azpicuetaruiz, M. T. M. Silva, and J. Arenasgarcia, "A novel scheme for diffusion networks with least-squares adaptive combiners,", Vol. 248, 1-6, 2012.

12. Tewari, M. and K. S. Vaisla, "Performance study of SEP and DEC hierarchical clustering algorithm for heterogeneous WSN," 2014 6th International Conference on Computational Intelligence and Communication Networks, 385-389, Bhopal, India, 2014.

13. Senouci, M. R., A.Mellouk, H. Senouci, and A. Aissani, "Performance evaluation of network lifetime spatial-temporal distribution for WSN routing protocols," Journal of Network and Computer Applications, Vol. 35, 1317-1328, Jul. 2012.
doi:10.1016/j.jnca.2012.01.016

14. Shao, X., F. Chen, Q. Ye, and S. Duan, "A robust diffusion estimation algorithm with self-adjusting step-size in WSNs," Sensors, Vol. 17, 824, 2017.
doi:10.3390/s17040824

15. Chen, F. and X. Shao, "Broken-motifs diffusion LMS algorithm for reducing communication load," Signal Processing, Vol. 133, 213-218, Apr. 1, 2017.
doi:10.1016/j.sigpro.2016.11.005

16. Yim, S. H., H. S. Lee, and W. J. Song, "A Proportionate diffusion LMS algorithm for sparse distributed estimation," IEEE Transactions on Circuits & Systems II Express Briefs, Vol. 62, 992-996, 2015.
doi:10.1109/TCSII.2015.2435631

17. Chen, Y., Y. Gu, and A. O. Hero, "Sparse LMS for system identification," IEEE International Conference on Acoustics, Speech and Signal Processing, 3125-3128, 2009.

18. Xie, L., D. H. Choi, S. Kar, and H. V. Poor, "Fully distributed state estimation for wide-area monitoring systems," IEEE Transactions on Smart Grid, Vol. 3, 1154-1169, 2012.
doi:10.1109/TSG.2012.2197764

19. Di Lorenzo, P., S. Barbarossa, and A. H. Sayed, "Distributed spectrum estimation for small cell networks based on sparse diffusion adaptation," IEEE Signal Processing Letters, Vol. 20, 1261-1265, 2013.
doi:10.1109/LSP.2013.2287373

20. Sayin, M. O. and S. S. Kozat, "Compressive diffusion strategies over distributed networks for reduced communication load," IEEE Transactions on Signal Processing, Vol. 62, 5308-5323, 2014.
doi:10.1109/TSP.2014.2347917

21. Cheng, J., D. Yu, and Y. Yang, "A fault diagnosis approach for roller bearings based on EMD method and AR model," Journal of Vibration Engineering, Vol. 20, 350-362, 2006.