Vol. 69
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-19
Design and Optimization of Quasi-Constant Mutual Inductance for Asymmetric Two-Coil Wireless Power Transfer System with Lateral Misalignments
By
Progress In Electromagnetics Research M, Vol. 69, 207-217, 2018
Abstract
Magnetic resonant wireless power transfer (WPT) is an emerging technology that may create new applications for wireless power charging. However, the output voltage fluctuations resulting from lateral misalignments are main obstructing factors for promoting this technology. In this paper, an asymmetric two-coil WPT system is presented. The mathematical model of the proposed topology with lateral misalignments is built based on equivalent circuit method. The expression of the output voltage is then derived by solving the system equivalent equations. In addition, a method of optimization parameters is proposed. The mutual inductance between the receiving coil and transmission coil is nearly constant by the proposed method with lateral misalignments. Therefore, the output voltage can be kept nearly constant. The asymmetric two-coil WPT system via magnetic resonance coupling is designed. Simulated and experimental results validating the proposed method are given.
Citation
Zhongqi Li, Wangyang Cheng, Jiliang Yi, and Junjun Li, "Design and Optimization of Quasi-Constant Mutual Inductance for Asymmetric Two-Coil Wireless Power Transfer System with Lateral Misalignments," Progress In Electromagnetics Research M, Vol. 69, 207-217, 2018.
doi:10.2528/PIERM18042503
References

1. Musavi, F. and W. Eberle, "Overview of wireless power transfer technologies for electric vehicle battery charging," IET Power Electronics, Vol. 7, No. 1, 60-66, Jan. 2014.
doi:10.1049/iet-pel.2013.0047

2. Chen, J., Z. Ding, and Z. Hu, "Metamaterial-based high-efficiency wireless power transfer system at 13.56 MHz for low power applications," Progress In Electromagnetics Research B, Vol. 72, No. 1, 17-30, 2017.
doi:10.2528/PIERB16071509

3. Shaw, T., A. Roy, and D. Mitra, "Efficiency enhancement of wireless power transfer system using MNZ metamaterials," Progress In Electromagnetics Research C, Vol. 68, No. 1, 11-19, 2016.
doi:10.2528/PIERC16081101

4. Choi, S. Y., B. W. Gu, S. Y. Jeong, et al. "Advances in wireless power transfer systems for roadwaypowered electric vehicles," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 18-36, Aug. 2015.
doi:10.1109/JESTPE.2014.2343674

5. Li, Z., C. Zhu, J. Jiang, et al. "A 3-kW wireless power transfer system for sightseeing car supercapacitor charge," IEEE Transactions on Power Electronics, Vol. 32, No. 5, 3301-3316, Jun. 2017.
doi:10.1109/TPEL.2016.2584701

6. Li, H., J. Li, K. Wang, et al. "A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling," IEEE Transactions on Power Electronics, Vol. 30, No. 7, 3998-4008, Aug. 2015.
doi:10.1109/TPEL.2014.2349534

7. Huh, J., S. W. Lee, W. Y. Lee, et al. "Narrow-width inductive power transfer system for online electrical vehicles," IEEE Transactions on Power Electronics, Vol. 26, No. 12, 3666-3679, Jun. 2011.
doi:10.1109/TPEL.2011.2160972

8. Choi, S. Y., S. Y. Jeong, B.W. Gu, et al. "Ultraslim S-type power supply rails for roadway-powered electric vehicles," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6456-6468, Jun. 2015.
doi:10.1109/TPEL.2015.2444894

9. Waffenschmidt, E., "Homogeneous magnetic coupling for free positioning in an inductive wireless power system," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 226-233, Jun. 2015.
doi:10.1109/JESTPE.2014.2328867

10. Zhang, Z. and K. T. Chau, "Homogeneous wireless power transfer for move-and-charge," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6213-622, Mar. 2015.
doi:10.1109/TPEL.2015.2414453

11. Su, Y. C., H. Jin, W. Y. Lee, et al. "Asymmetric coil sets for wireless stationary EV chargers with large lateral tolerance by dominant field analysis," IEEE Transactions on Power Electronics, Vol. 29, No. 12, 6406-6420, Feb. 2014.
doi:10.1109/TPEL.2014.2305172

12. RamRakhyani, A. K., S. Mirabbasi, and M. Chiao, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, No. 1, 48-63, Oct. 2011.
doi:10.1109/TBCAS.2010.2072782

13. Soma, M., D. C. Galbraith, and R. L. White, "Radio-frequency coils in implantable devices: Misalignment analysis and design procedure," IEEE Transactions on Biomedical Engineering, Vol. 34, No. 4, 276-282, Apr. 1987.
doi:10.1109/TBME.1987.326088

14. Zierhofer, C. M. and E. S. Hochmair, "Geometric approach for coupling enhancement of magnetically coupled coils," IEEE Transactions on Biomedical Engineering, Vol. 43, No. 7, 708-714, Jul. 1996.
doi:10.1109/10.503178