Vol. 70
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-12
Study on the Vibration Mechanism of the Relay Coil in a Three-Coil WPT System
By
Progress In Electromagnetics Research M, Vol. 70, 117-126, 2018
Abstract
Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. Frequency splitting occurs in the over-coupled region. In addition, the vibration of the receiver and relay coils is observed in the over-coupled region. The vibration mechanism of the relay coil is investigated in this study. First, the circuit model of a three-coil WPT system is established, and the transfer characteristics of the system are examined by applying circuit theories. Second, the transfer characteristics of the three-coil WPT system are analyzed using simulation software. Third, the energy equation of state of the three-coil WPT system is established with the introduction of entropy variable. Lastly, the experimental circuit of the three-coil WPT system is designed. The experimental results are consistent with the theoretical analysis. The vibration of the relay coil is clearly explained. The transfer characteristics of the three-coil WPT system, particularly the relay coil, may provide ideas to achieve the maximum output power and transmission efficiency under various operating conditions.
Citation
Suqi Liu, and Jianping Tan, "Study on the Vibration Mechanism of the Relay Coil in a Three-Coil WPT System," Progress In Electromagnetics Research M, Vol. 70, 117-126, 2018.
doi:10.2528/PIERM18042603
References

1. Tesla, N., , U.S. Patent, 1119732, 1914.
doi:10.1109/TIE.2009.2020076

2. Schirmer, J. and H. Kazmierczak, , U.S. Patent, 20040008036, 2004.
doi:10.1587/elex.14.20161167

3. Kissin, M. L. G., J. T. Boys, and G. A. Covic, "Interphase mutual inductance in polyphase inductive power transfer systems," IEEE Transactions on Industrial Electronics, Vol. 56, No. 7, 2393, 2009.
doi:10.1126/science.1143254

4. Duong, Q. T. and M. Okada, "kQ-product formula for multiple-transmitter inductive power transfer system," IEICE Electronics Express, Vol. 14, 20161167, 2017.
doi:10.1587/elex.14.20170195

5. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83, 2007.
doi:10.1587/elex.10.20132010

6. Tamura, M., Y. Watanabe, and I. Takano, "Waveguide-mode wireless power transfer in shielded space with aperture plane," IEICE Electronics Express, Vol. 14, 20170195, 2017.
doi:10.1109/TCE.2015.7150569

7. Takeno, K., "Wireless power transmission technology for mobile devices," IEICE Electronics Express, Vol. 10, 20132010, 2013.
doi:10.1109/TIE.2010.2046002

8. Nguyen, V. T., S. H. Kang, J. H. Choi, et al. "Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications ," IEEE Transactions on Consumer Electronics, Vol. 61, No. 2, 160, 2015.

9. Sample, A. P., D. A. Meyer, and J. R. Smith, "Experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 58, No. 2, 544, 2011.

10. Huang, R., B. Zhang, D. Qiu, et al. "Frequency splitting phenomena of magnetic resonant coupling wireless power transfer," IEEE Transactions on Magnetics, Vol. 50, No. 11, 1, 2014.
doi:10.1063/1.4999615

11. Liu, S., J. Tan, S. Xue, et al. "Analysis on coupling mechanism characteristics of multi-load wireless power transmission system," Automation of Electric Power Systems, Vol. 40, No. 18, 84, 2016.
doi:10.1587/elex.12.20141019

12. Liu, S., J. Tan, and X. Wen, "Modeling of coupling mechanism of wireless power transfer system and vibration phenomenon of receiver-coil in three-coil system," AIP Advances, Vol. 7, 115107, 2017.
doi:10.1016/j.physa.2014.05.014

13. Deng, Z., W. Lin, N. Li, et al. "The uncertainty entropy of low-rate speech quality evaluation and the analyses of the gray correlation," IEICE Electron Express, Vol. 12, No. 3, 20141019, 2015.
doi:10.1080/00221309.1947.9918144

14. Martyushev, L. M. and V. D. Seleznev, "The restrictions of the maximum entropy production principle," Physica A Statistical Mechanics & Its Applications, Vol. 410, No. 15, 17, 2014.
doi:10.1017/S0269888905000494

15. Ashby, W. R., "Principles of the self-organizing dynamic system," The Journal of General Psychology, Vol. 37, No. 2, 125, 1947.
doi:10.1016/j.jnca.2017.03.008

16. Serugendo, G. Di Marzo, et al. "Self-organization in multi-agent systems," Knowledge Engineering Review, Vol. 20, No. 2, 165, 2006.
doi:10.1016/j.adhoc.2015.06.008

17. Baker, T., M. Asim, H. Tawfik, et al. "An energy-aware service composition algorithm for multiple cloud-based IoT applications," Journal of Network & Computer Applications, Vol. 89, 96, 2017.
doi:10.3390/su1041195

18. Baker, T., B. Al-Dawsari, H. Tawfik, et al. "GreeDi: An energy efficient routing algorithm for big data on cloud," Ad Hoc Networks, Vol. 3, 83, 2015.
doi:10.1016/j.physa.2012.11.030

19. Hammond, G. P. and A. B. Winnett, "The influence of thermodynamic ideas on ecological economics: An interdisciplinary critique," Sustainability, Vol. 1, No. 4, 1195, 2009.

20. Chiavazzo, E., M. Fasano, and P. Asinari, "Inference of analytical thermodynamic models for biological networks," Physica A: Statistical Mechanics and Its Applications, Vol. 392, No. 5, 1122, 2013.

21. Entropy, https://en.wikipedia.org/wiki/Entropy.

22. Cropper, W. H., Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking, 93-105, Oxford University Press, London, United Kingdom, 2004, ISBN 978-0-19-517324-6.

23. Lorentz force, https://en.wikipedia.org/wiki/Lorentz force.

24. Tse, F. S., I. E. Morse, and R. T. Hinckle, Mechanical Vibrations: Theory and Applications, 2nd Ed., 93, Allyn and Bacon, Boston, Massachusetts, 1978.