Vol. 70
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-10
Analytical Method for Calculation of Cogging Torque Reduction Due to Slot Shifting in a Dual Stator Dual Rotor Permanent Magnet Machine with Semi-Closed Slots
By
Progress In Electromagnetics Research M, Vol. 70, 99-108, 2018
Abstract
Radial flux Dual Stator Dual Rotor Permanent Magnet (DSDRPM) machine can be considered as an exterior rotor PM machine kept over an interior rotor PM machine. This facilitates with a scope for optimization of the relative placement of inner and outer stator slots of the machines to achieve cogging torque minimization. This paper deals with the analytical prediction of flux density distribution in an internal and external rotor PM machines with semi-closed slots and further utilizes it to calculate the cogging torque in DSDRPM machine. An optimal angle of shift between the stator slots of the two machines has been determined to obtain a reduction in the resultant cogging torque of DSDRPM machine. The analytical results are verified with the Finite Element Analysis (FEA) results and found to be in close agreement with each other.
Citation
Praveen Kumar Md Motiur Reza Rakesh Kumar Srivastava , "Analytical Method for Calculation of Cogging Torque Reduction Due to Slot Shifting in a Dual Stator Dual Rotor Permanent Magnet Machine with Semi-Closed Slots," Progress In Electromagnetics Research M, Vol. 70, 99-108, 2018.
doi:10.2528/PIERM18050506
http://www.jpier.org/PIERM/pier.php?paper=18050506
References

1. Zhu, Z. Q. and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," IEEE Trans. Energy Convers., Vol. 15, No. 4, 407-412, Dec. 2000.
doi:10.1109/60.900501

2. Hanselman, D. C., "Effect of skew, pole count and slot count on brushless motor radial force, cogging torque and back EMF," Proc. Inst. Elect. Eng. --- Electr. Power Appl., Vol. 144, No. 5, 325-325, Sep. 1997.
doi:10.1049/ip-epa:19971205

3. Bianchi, N. and S. Bolognani, "Design techniques for reducing the cogging torque in surface-mounted PM motors," IEEE Transactions on Industry Applications, Vol. 38, No. 2, 1259-1265, Sep./Oct. 2002.

4. Wanjiku, J., M. A. Khan, P. S. Barendse, and P. Pillay, "Influence of slot openings and tooth profile on cogging torque in axial-flux PM machines," IEEE Trans. Ind. Electron., Vol. 62, No. 12, 7578-7589, Dec. 2015.
doi:10.1109/TIE.2015.2458959

5. Aydin, M., Z. Q. Zhu, T. A. Lipo, and D. Howe, "Minimization of cogging torque in axial-flux permanent-magnet machines: Design concepts," IEEE Transactions on Magnetics, Vol. 43, No. 9, 3614-3622, Sep. 2007.
doi:10.1109/TMAG.2007.902818

6. Qu, R. and T. A. Lipo, "Dual-rotor, radial flux, toroidally wound, permanent-magnet machines," IEEE Transactions on Industry Applications, Vol. 39, No. 6, 1665-1673, Nov./Dec. 2003.

7. Chang, S. K., S. Y. Hee, W. N. Ki, and S. C. Hong, "Magnetic pole shape optimization of permanent magnet motor for reduction of cogging torque," IEEE Transactions on Magnetics, Vol. 33, No. 2, 1822-1827, Mar. 1997.
doi:10.1109/20.582633

8. Li, T. and G. Slemon, "Reduction of cogging torque in PM motors," IEEE Transactions on Magnetics, Vol. 24, No. 6, 2901-2903, Nov. 1988.

9. Dalal, A. and P. Kumar, "Analytical model for permanent magnet motor with slotting effect, armature reaction, and ferromagnetic material property," IEEE Transactions on Magnetics, Vol. 51, No. 12, paper ID: 8114910, Dec. 2015.

10. Binns, K. J. and P. J. Lawrenson, Analysis and Computation of Electric and Magnetic Field Problems, Pergamon Press, 1973.

11. Lubin, T., S. Mezani, and A. Rezzoug, "2-d exact analytical model for surface-mounted permanent-magnet motors with semi-closed slots," IEEE Transactions on Magnetics, Vol. 47, No. 2, 479-492, 2011.
doi:10.1109/TMAG.2010.2095874

12. Zhu, Z. Q., S. Ruangsinchaiwanich, and D. Howe, "Synthesis of cogging-torque waveform from analysis of a single stator slot," IEEE Transactions on Industry Applications, Vol. 42, No. 3, 650-657, 2006.
doi:10.1109/TIA.2006.872930

13. Howe, D. and Z. Q. Zhu, "The influence of finite element discretization on the prediction of cogging torque in permanent magnet excited motors," IEEE Transactions on Magnetics, Vol. 42, No. 2, 1080-1083, 1992.
doi:10.1109/20.123869

14. Zarko, D., D. Ban, and T. A. Lipo, "Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance," IEEE Transactions on Magnetics, Vol. 42, No. 7, 1828-1837, 2006.
doi:10.1109/TMAG.2006.874594

15. Wu, L., Z. Zhu, D. Staton, M. Popescu, and D. Hawkins, "An improved subdomain model for predicting magnetic field of surface-mounted permanent magnet machines accounting for tooth-tips," IEEE Transactions on Magnetics, Vol. 47, No. 6, 1693-1704, 2011.
doi:10.1109/TMAG.2011.2116031

16. Zhu, Z. Q. and D. Howe, "Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors," IEEE Transactions on Magnetics, Vol. 28, No. 2, 1080-1083, Mar. 1992.
doi:10.1109/20.123947

17. Proca, A. B., A. Keyhani, A. E. Antably, W. Lu, and M. Dai, "Analytical model for permanent magnet motors with surface mounted magnets," IEEE Trans. Energy Convers., Vol. 18, No. 3, 386-391, Sep. 2003.
doi:10.1109/TEC.2003.815829

18. Kumar, P. and P. Bauer, "Improved analytical model of a permanent-magnet brushless DC motor," IEEE Transactions on Magnetics, Vol. 44, No. 10, 2299-2309, Oct. 2008.
doi:10.1109/TMAG.2008.2001450