Vol. 71
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-24
Waveguide Designing for Absorbing Modulator in GaN /AlN Structure for All Optical Networking
By
Progress In Electromagnetics Research M, Vol. 71, 51-61, 2018
Abstract
In this paper a waveguide is introduced as an absorbing modulator using GaN/AlN structure based on spherical quantum dots. The role of waveguide (modulator) dimensions on optical profile of light in the channel and coupling efficiency is also investigated. These parameters can affect the main characteristics of modulator like absorption and depth of modulation. First we will give a brief explanation about the all optical modulator structure based on spherical quantum dots and its optical properties. Then the electrical fields in optical fiber and modulator will be introduced, and the effects of dimensions on these fields will be discussed. The results show that the electric field distribution determines the insertion loss and also effects on modulation. Finally we will determine the proper dimensions of modulator for coupling to optical fiber.
Citation
Ali Rahmani, and Ali Rostami, "Waveguide Designing for Absorbing Modulator in GaN /AlN Structure for All Optical Networking," Progress In Electromagnetics Research M, Vol. 71, 51-61, 2018.
doi:10.2528/PIERM18050705
References

1. Nevou, L., F. H. Julien, R. Colombelli, F. Guillot, and E. Monroy, "Room-temperature intersubband emission of GaN/AlN quantum wells at λ = 2.3 μm," Electron. Lett., Vol. 42, 1308-1309, 2006.
doi:10.1049/el:20062282

2. Hamazaki, J., S. Matsui, H. Kunugita, K. Ema, H. Kanazawa, T. Tachibana, A. Kikuchi, and K. Kishino, "Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55 μm in GaN/AlN multiple-quantum wells," Appl. Phys. Lett., Vol. 84, 1102-1104, 2004.
doi:10.1063/1.1647275

3. Friel, I., K. Driscoll, E. Kulenica, M. Dutta, R. Paiella, and T. D. Moustakas, "Investigation of the design parameters of AlN/GaN multiple quantum wells grown by molecular beam epitaxy for intersubband absorption," J. Cryst. Growth, Vol. 278, 387-392, 2005.
doi:10.1016/j.jcrysgro.2005.01.042

4. Nevou, L., M. Tchernycheva, L. Doyennette, F. H. Julien, E. Warde, R. Colombelli, F. Guillot, S. Leconte, E. Monroy, T. Remmele, and M. Albrecht, "New developments for nitride unipolar devices at 1.3-1.5 μm wavelengths," Superlattices Microstruct., Vol. 40, 412-417, 2006.
doi:10.1016/j.spmi.2006.09.016

5. Gopal, A. V., H. Yoshida, A. Neogi, N. Georgiev, T. Mozume, T. Simoyama, O. Wada, H. Yoshida, A. Neogi, N. Georgiev, T. Mozume, T. Simoyama, O. Wada, and H. Ishikawa, "Intersubband absorption saturation in InGaAs-AlAsSb quantum wells," IEEE J. Quantum Electron., Vol. 38, 1515-1520, 2002.
doi:10.1109/JQE.2002.804293

6. Akimoto, R., B. S. Li, K. Akita, and T. Hasama, "Subpicosecond saturation of intersubband absorption in (CdS/ZnSe)/BeTe quantum well waveguides at telecommunication wavelength," Appl. Phys. Lett., Vol. 87, 181104, 2005.
doi:10.1063/1.2123379

7. Sun, H. H., F. Y. Guo, D. Y. Li, L. Wang, D. B. Wang, and L. C. Shao, "Intersubband absorption properties of high Al content AlxGa11−xN/GaN multiple quantum wells grown with different interlayers by metal organic chemical vapor deposition," Nanoscale Research Letters, Vol. 7, 1-6, 2012.
doi:10.1186/1556-276X-7-1

8. Neogi, A., H. Yoshida, T. Mozume, N. Georgiev, and O. Wada, "Intersubband transition and ultrafast all-optical modulation using multiple InGaAs-AlAsSb-InP coupled double-quantum-well structures," IEEE J. Sel. Top. Quantum Electron., Vol. 7, 7, 2001.
doi:10.1109/2944.974243

9. Chen, G., X. Q. Wang, X. Rong, P. Wang, F. J. Xu, N. Tang, Z. X. Qin, Y. H. Chen, and B. Shen, "“Intersubband transition in GaN/InGaN multiple quantum wells," Sci. Rep., Vol. 5, 11485, 2015.
doi:10.1038/srep11485

10. Fu, H., Z. Lu, X. Huang, H. Chen, and Y. Zhao, "Crystal orientation dependent intersubband transition in semipolar AlGaN/GaN single," App. Phys., Vol. 119, 174502, 2016.
doi:10.1063/1.4948667

11. Rostami, A., H. Baghban, and H. Rasooli Saghai, "An ultra-high level second-order nonlinear optical susceptibility in strained asymmetric GaN-AlGaN-AlN quantum wells: Towards all-optical devices and systems," Microelectronics J., Vol. 38, 900, 2007.
doi:10.1016/j.mejo.2007.07.071

12. Rahmani, A. and A. Rostami, "Ultrafast GaN/AlN modulator based on quantum dot for terabit all-optical communication," Optik, Vol. 125, 3844, 2014.
doi:10.1016/j.ijleo.2014.01.175

13. Kim, J., M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, "Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers," IEEE J. of Quantum Electronics, Vol. 45, 3, 2009.
doi:10.1109/JQE.2008.2010881

14. Nishihara, H., M. Haruna, and T. Suhara, Optical Integrated Circuits, 29, 89, McGraw-Hill, USA, 1985.

15. Kawano, K. and T. Kitoh, Introduction to Optical Waveguide Analysis, John Wiley & Sons, Newyork, 37, 2001.