Vol. 73
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-09-04
A Novel Hybrid Fractal Antenna for Wireless Applications
By
Progress In Electromagnetics Research M, Vol. 73, 25-35, 2018
Abstract
This paper presents a hybrid design of Sierpinski Carpet and Minkowski antenna for wireless applications. The hybrid antenna is designed, simulated and fabricated on an FR4 substrate with thickness 1.6 mm and dielectric constant 4.4. The dimensions of antenna are 45 x 38.92 x 1.6 mm3 which operates at various frequencies 3.43 GHz, 4.78 GHz, 6.32 GHz, 8.34 GHz and 9.64 GHz, and can be used for WiMax, C-band applications, Point-to-point Hi speed wireless communication and X-band (satellite Communication) applications. The measured results are also compared with the simulated ones which are in agreement with each other. Ansoft High Frequency Structure Simulator (HFSS) is used to design and simulate the antenna.
Citation
Narinder Sharma, Vipul Sharma, and Sumeet Singh Bhatia, "A Novel Hybrid Fractal Antenna for Wireless Applications," Progress In Electromagnetics Research M, Vol. 73, 25-35, 2018.
doi:10.2528/PIERM18052403
References

1. Singh, A. and S. Singh, "A novel CPW-fed wideband printed monopole antenna with DGS," International Journal of Electronics and Communications (AEU), Vol. 69, 299-306, 2015, http://dx.doi.org/10.1016/j.aeue2014.09.016.
doi:10.1016/j.aeue.2014.09.016        Google Scholar

2. Khandewal, M. K., B. K. Kanaujia, S. Dwari, S. Kumar, and A. K. Gautam, "Analysis and design of dual band compact stacked Microstrip patch antenna with defected ground structure for WLAN/Wi-Max," International Journal of Electronics and Communications (AEU), Vol. 69, 39-47, 2015.
doi:10.1016/j.aeue.2014.07.018        Google Scholar

3. Azaro, R., D. Luca, E. Zeni, M. Benedetti, P. Rocca, and A. Massa, "A hybrid prefractal three-band antenna for multistandard mobile wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 905-908, 2009.
doi:10.1109/LAWP.2009.2028627        Google Scholar

4. Behera, S. and K. J. Vinoy, "Multi-port network approach for the analysis of dual band fractal microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 11, 5100-5106, 2012.
doi:10.1109/TAP.2012.2208085        Google Scholar

5. Oraizi, H. and S. Hedayati, "Miniaturization of microstrip antennas by the novel application of Guiseppe Peano Fractal Geometries," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3559-3567, 2012.
doi:10.1109/TAP.2012.2201070        Google Scholar

6. Reddy, V. V. and N. V. S. N. Sarma, "Compact circularly polarized asymmetrical fractal boundary microstrip antenna for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 118-121, 2014, doi: 10.1109/LAWP.2013.2296951.
doi:10.1109/LAWP.2013.2296951        Google Scholar

7. Bhatia, S. S., J. S. Sivia, and N. Sharma, "An optimal design of fractal antenna with modified ground structure for wideband applications," Wireless Personal Communication, 1-15, 2018, http://dx.doi.org/10.1107/s11277-018-5891-2.        Google Scholar

8. Sharma, N. and V. Sharma, "A journey of antenna from dipole to fractal: A review," International Journal of Engineering Technology, Vol. 6, 317-351, 2017.        Google Scholar

9. Punete, C., B. Aliaada, J. Romeu, and R. Cardama, "On the behavior of Sierpinski multiband antenna," IEEE Transcation on Antenna Propagation, Vol. 46, No. 4, 517-524, 1998.
doi:10.1109/8.664115        Google Scholar

10. Abdullah, N., M. A. Arshad, E. Mohd, and S. A. Hamzah, "Design of Minkowski Fractal Antenna for dual band applications," Proc. IEEE — Conference on Computer and Communication Engineering, 352-355, 2015.        Google Scholar

11. Sharma, N. and S. S. Bhatia, "Split ring resonator based multiband hybrid fractal antennas for wireless applications," AEUE — International Journal of Electronics and Communications, Vol. 93, 39-52, 2018.
doi:10.1016/j.aeue.2018.05.035        Google Scholar

12. Gianvittorio, J. P. and Y. R. Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antenna’s and Propagation Magazine, Vol. 44, No. 1, 20-36, 2002.
doi:10.1109/74.997888        Google Scholar

13. Choukiker, Y. K., S. K. Sharma, and S. K. Behera, "Hybrid fractal shape planar Monopole Antenna covering multiband wireless communication with MIMO implementation for handheld mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1483-1487, 2014.
doi:10.1109/TAP.2013.2295213        Google Scholar

14. Orazi, H. and H. Soleimani, "Miniaturization of the triangular patch antenna by the novel dualreverse- arrow fractal," IET Microwaves, Antennas & Propagation, 1-7, 2014, doi: 10.1049/ietietmap.2014.0462.
doi:10.1109/TAP.2014.2307791        Google Scholar

15. Mitra, D., B. Ghosh, A. Sarkhel, and S. R. B. Chaudhuri, "A miniaturized ring slot antenna design with enhanced radiation characteristics," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 300-305, 2015.
doi:10.1109/TAP.2015.2496628        Google Scholar

16. Camps-Raga, B. and N. E. Islam, "Optimized simulation algorithms for fractal generation and analysis," Progress In Electromagnetics Research M, Vol. 11, 225-240, 2010.
doi:10.2528/PIERM10012610        Google Scholar

17. Baliarda, P., "An iterative model for fractal antenna application on the Sierpinski Gasket Antenna," IEEE Transaction on Antenna and Propagation, Vol. 48, No. 5, 713-719, 2000.
doi:10.1109/8.855489        Google Scholar

18. Kumar, Y. and S. Singh, "A compact multiband hybrid fractal antenna for multistandard Mobile wireless applications," Wireless Pers. Commun., Vol. 84, No. 1, 57-67, Springer, April 2015, doi:10.1007/s11277 -015-2593-x.
doi:10.1007/s11277-015-2593-x        Google Scholar

19. Bhatia, S. S., A. Sahni, and S. B. Rana, "A novel design of compact monopole antenna with defected ground plane for wideband applications," Progress In Electromagnetics Research M, Vol. 70, 21-31, 2018.        Google Scholar

20. Karli, R. and H. Ammor, "A simple and original design of multiband microstrip patch antenna for wireless communication," IJMA, Vol. 2, No. 2, 41-43, April 2013.        Google Scholar

21. Kumar, A., A. Patnaik, and G. Christos, "Design and testing of a multifrequency antenna with a reconfigurable feed," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 730-733, April 2014.        Google Scholar

22. Luo, Q., J. R. Pereira, and H. M. Salgado, "Fractal monopole antenna for WLAN USB dongle," Proc. IEEE — Conference on Antenna & Propagation, 245-247, 2009.        Google Scholar

23. Rao, Q. and W. Geyi, "Compact multiband antenna for handheld devices," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3337-3339, 2009.
doi:10.1109/TAP.2009.2029384        Google Scholar

24. Dhar, S., R. Ghatak, B. Gupta, and D. R. Poddar, "A dielectric resonator loaded Minkowski Fractal shaped slot loop heptaband antenna," IEEE Transactions on Antenna and Propagation, 1-9, 2015, doi: 10.1109/TAP.2015.2393869.        Google Scholar

25. Reddy, V. V. and N. V. S. N. Sarma, "Tri-band circularly-polarized Koch fractal boundary microstrip antenna for wireless applications," IEEE Antennas and Wireless Propagation Letters, 1-4, 2013, doi: 10.1109/LAWP.2014.2327566.        Google Scholar

26. Kiran, D. V., D. Sankaranarayanan, and B. Mukherjee, "Compact embedded dual-element rectangular dielectric resonator antenna combining Sierpinski and Minkowski fractals," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 7, No. 5, 786-791, 2017.
doi:10.1109/TCPMT.2017.2690463        Google Scholar

27. Sankaranarayanan, D., D. Venkatakiran, and B. Mukherjee, "A novel compact fractal ring based cylindrical dielectric resonator antenna for ultra-wideband applications," Progress In Electromagnetics Research C, Vol. 67, 71-83, 2016.
doi:10.2528/PIERC16062007        Google Scholar

28. Gupta, S., P. Kshirsagar, and B. Mukherjee, "Sierpinski fractal inspired inverted pyramidal DRA for wide band applications," Electromagnetics, Taylor & Francis, Vol. 38, No. 2, 103-112, 2018.        Google Scholar