1. Wunder, G., H. Boche, T. Strohmer, and P. Jung, "Sparse signal processing concepts for efficient 5g system design," IEEE Access, Vol. 3, 195-208, Mar. 2015.
doi:10.1109/ACCESS.2015.2407194 Google Scholar
2. Tullberg, H., P. Popovski, Z. Li, et al. "The METIS 5G system concept: Meeting the 5G requirements," IEEE Commun. Mag., Vol. 54, No. 12, 132-139, Dec. 2016.
doi:10.1109/MCOM.2016.1500799CM Google Scholar
3. Daniels, R. C. and R. W. Heath, "60 GHz wireless communications: Emerging requirements and design recommendations," IEEE Veh. Technol. Mag., Vol. 2, No. 3, 41-50, Feb. 2008.
doi:10.1109/MVT.2008.915320 Google Scholar
4. Bahramzy, P., S. Svendsen, O. Jagielski, and G. Frølund Pedersen, "SAR study of mobile phones as a function of antenna Q," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4139-4147, 2015.
doi:10.1109/TAP.2015.2452959 Google Scholar
5. Lazarescu, C., I. Nica, and V. David, "SAR in human head due to mobile phone exposure," 2011 E-Health and Bioengineering Conference (EHB), 1-4, 2011. Google Scholar
6. Chen, I.-F., C.-M. Peng, and C.-C. Hung, "Experimental study of estimating SAR values for mobile phone applications," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, 2008. Google Scholar
7. Mihai, G., A. Marian Aron, V. Haralambie, and A. Paljanos, "A study of mobile phone SAR levels modification in different experimental configurations under 2G and 3G communication standards," 2016 International Conference on Communications (COMM), 491-494, 2016.
doi:10.1109/ICComm.2016.7528294 Google Scholar
8. Takei, R., T. Nagaoka, K. Saito, S. Watanabe, and M. Takahashi, "SAR variation due to exposure from a smartphone held at various positions near the torso," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 747-753, 2017.
doi:10.1109/TEMC.2016.2642201 Google Scholar
9. Cihangir, A., C. J. Panagamuwa, W. G. Whittow, G. Jacquemod, F. Gianesello, R. Pilard, and C. Luxey, "Dual-band 4G eyewear antenna and SAR implications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2085-2089, 2017.
doi:10.1109/TAP.2017.2670562 Google Scholar
10. Derat, B., "Experimental study on the relationship between specific absorption rate and RF conducted power for LTE wireless devices," 2015 European Microwave Conference (EuMC), 746-748, 2015.
doi:10.1109/EuMC.2015.7345871 Google Scholar
11. Oliveira, C., M. Mackowiak, and L. M. Correia, "Exposure assessment of smartphones and tablets," 2015 International Symposium on Wireless Communication Systems (ISWCS), 436-440, 2015.
doi:10.1109/ISWCS.2015.7454380 Google Scholar
12. International Commission on Non-Ionizing Radiation Protection, Health Physics "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, No. 4, 494-522, 1998. Google Scholar
13. FCC "Code of Federal Regulations CFR title 47, part 1.1310,", 2010. Google Scholar
14. "Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,", IEEE C95.1, 2005. Google Scholar
15. Hong, W., "Solving the 5G mobile antenna puzzle: Assessing future directions for the 5G mobile antenna paradigm shift," IEEE Micro. Mag., Vol. 18, No. 7, 86-102, Nov. 2017.
doi:10.1109/MMM.2017.2740538 Google Scholar
16., https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/techbrief/ab-ansys-hfss-forantenna- simulation.pdf.
17. Laakso, I., S. Tanaka, S. Koyama, V. De Santis, and A. Hirata, "Inter-subject variability in electric fields of motor cortical tDCS," Brain Stimulation, Vol. 8, No. 5, 906-913, Elsevier, 2015.
doi:10.1016/j.brs.2015.05.002 Google Scholar
18., http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.
19., https://transition.fcc.gov/bureaus/oet/info/documents/bulletins/oet65/oet65.pdf.