Vol. 73
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-09-17
Propagation Losses of UWB Antenna for on-Body to in-Body Signal Propagation
By
Progress In Electromagnetics Research M, Vol. 73, 101-109, 2018
Abstract
To provide better care to the people, who are living in rural areas and whoever in need of emergency medical care, it becomes essential to develop remote monitoring health care applications. Body Area Networks (BAN) that are formed with wearable or implanted wireless sensor devices will play an important role to achieve the above task. Since the communication in BAN is of short communication distance and higher data rate, the Ultra-Wideband (UWB) radio signals make themselves as the right candidates due to their inherent characteristics. This requires more research in design and development of UWB transceivers, especially for implantable biomedical devices. This paper proposes a UWB antenna design and a numerical channel model to predetermine the path loss characteristics of an on-body to in-body channel in UWB. The proposed model has been developed using ray tracing procedures and includes the antenna polarization and radiation pattern. In addition, the predicted results have been validated by measurements conducted with honey based liquid phantoms.
Citation
Anumuthu Priya, Sulthan Kaja Mohideen, and Packirisamy Thirumaraiselvan, "Propagation Losses of UWB Antenna for on-Body to in-Body Signal Propagation," Progress In Electromagnetics Research M, Vol. 73, 101-109, 2018.
doi:10.2528/PIERM18071401
References

1. Chavez-Santiago, R. and I. Balasingham, "Ultra wideband signals in medicine [life sciences]," IEEE Signal Process. Mag., Vol. 31, No. 6, 130-136, Nov. 2014.
doi:10.1109/MSP.2014.2340234

2. Zastrow, E., S. K. Davis, and S. C. Hagness, "Safety assessment of breast cancer detection via ultra- wide band microwave radar operating in pulsed radiation mode," Microwave Optical Technology Letters, Vol. 49, No. 1, 221-225, Jan. 2007.
doi:10.1002/mop.22089

3. Otto, C., A. Milenkovic, C. Sanders, and E. Jovanov, "System architecture of a wireless body area sensor network for ubiquitous health monitoring," Journal of Mobile Multimedia, Vol. 1, No. 4, 307-326, 2006.

4. Tang, M.-C., R. W. Ziolkowski, and S. Xiao, "Compact hyper-band printed slot antenna with stable radiation properties," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, Jun. 2014.
doi:10.1109/TAP.2014.2314299

5. Li, P., J. Liang, and X. Chen, "Study of printed elliptical/circular slot antennas for ultrawideband applications," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1670-1675, Jun. 2006.
doi:10.1109/TAP.2006.875499

6. Chen, W.-L., G.-M. Wang, and C.-X. Zhang, "Bandwidth enhancement of a micro strip-line- fed printed wide-slot antenna with a fractal-shaped slot," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 2176-2179, Jul. 2009.
doi:10.1109/TAP.2009.2021974

7. Wang, J. and Q. Wang, "Channel modeling and BER performance of an implant UWB body area link," Proceedings of Second International Symposium on Applied Sciences in Biomedical and Communication Technology (ISABEL'09), Bratislava, Slovak Republic, 2009.

8. Nagaoka, T., S. Watanabe, K. Saurai, E. Kunieda, S. Watanabe, M. Taki, and Y. Yamanaka, "Development of realistic high resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-fi eld dosimetry," Phys. Med. Biol., Vol. 49, 1-15, 2004.
doi:10.1088/0031-9155/49/1/001

9. Khaleghi, A., R. Chavez-Santiago, X. Liang, I. Balasingham, V. C. M. Leung, and T. A. Ramstad, "On ultra-wide band channel modeling for in-body communications," Proceedings of Fifth IEEE International Symposium on Wireless Pervasive Computing (ISWPC), 140-145, Modena, Italy, May 5-10, 2010.

10. Khaleghi, A., R. Chavez-Santiago, and I. Balasingham, "Ultra-wideband statistical propagation channel model for implant sensors in the human chest," IET Microwaves, Antennas & Propagation, Vol. 5, No. 15, 1805-1812, 2011.
doi:10.1049/iet-map.2010.0537

11. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies," Brooks Air Force, N.AL/OE-TR-1996-0037, San Antonio, TX, 1996.

12. Khaleghi, A., R. Chavez-Santiago, and I. Balasingham, "An improved ultra-wide band channel model including the frequency-dependent attenuation for in-body communications," Proc. IEEE 34th Annu. Int. Conf. Eng. Med. Biol. Soc., 1631-1634, San Diego, CA, USA, 2012.

13. Stoa, S., R. Chavez-Santiago, and I. Balasingham, "An ultra-wide band communication channel model for the abdominal region," Proc. IEEE Globecom 2010 Workshop on Advanced Sensor Integration Technology (ASIT 2010), Miami, Florida, USA, Dec. 2010.

14. Stoa, S., R. Chavez-Santiago, and I. Balasingham, "An ultra wideband communication channel model for capsule endoscopy," IEEE, 2010.

15. Floor, P. A., R. Chavez-Santiago, S. Brovoll, O. Aardal, J. Bergsland, O.-J. H. N. Grymyr, P. S. Halvorsen, R. Palomar, D. Plettemeier, S.-E. Hamran, T. A. Ramstad, and I. Balasingham, "In-body to on-body ultra wideband propagation model derived from measurements in living animals," IEEE Journal of Biomedical and Health Informatics, Vol. 19, No. 3, 938-948, 2015.
doi:10.1109/JBHI.2015.2417805

16. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, New Jersey, 1991.

17. Seidel, S. Y. and T. S. Rappaport, "Site-speci c propagation prediction for wireless in-building personal communication system design," IEEE Transactions on Vehicular Technology, Vol. 43, No. 4, 879-891, 1994.
doi:10.1109/25.330150

18. Rappaport, T. S., Wireless Communications Principles and Practice, Prentice Hall, New Jersey, 2002.

19. Thirumaraiselvan, P. and S. Jayashri, "Numerical modelling of ultra wide band signal propagation in human abdominal region," International Journal of Biomedical Engineering and Technology (IJBET), Vol. 27, No. 1/2, 17-32, 2018.
doi:10.1504/IJBET.2018.093083