Vol. 74
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-16
A Wideband Medium-Gain Vertically Polarized Omnidirectional Antenna Array
By
Progress In Electromagnetics Research M, Vol. 74, 169-178, 2018
Abstract
A medium-gain vertically polarized omnidirectional antenna array (VPOA) with wide bandwidth is proposed in this paper. Initially, a conventional printed dipole antenna with integrated balun (IB) is introduced to use as the wideband element. Then, four antenna elements are alternately arranged in the vertical direction to achieve high gain. Moreover, the four elements are excited by a shunt-fed feeding network which is utilized to provide uniform amplitude and phase for the elements. The feeding network has a common ground with the balun, and it can be easily integrated with the IB. Furthermore, two metallic cylinders placed in the normal direction of the substrate are used as two reflectors to improve the gain variation in the horizontal plane. In order to validate the design method, a prototype is fabricated and measured. The measured results indicate that the proposed antenna has an impedance bandwidth of 56% (1.12-2 GHz) for VSWR≤2 and a simple structure with lateral size of 0.45 λ00 is the free-space wavelength at center frequency). In addition, stable omnidirectional radiation patterns are obtained with gains around 6.5 dB and the gain variations in the horizontal plane less than 2 dB across the operating band.
Citation
Long Yang, "A Wideband Medium-Gain Vertically Polarized Omnidirectional Antenna Array," Progress In Electromagnetics Research M, Vol. 74, 169-178, 2018.
doi:10.2528/PIERM18072805
References

1. Sierra-Perez, M., F. L. Heras-Andres, and J. A. G. D. Lope, "Low-cost printed collinear array antenna," IEEE Antennas and Propag. Magazine, Vol. 43, No. 5, 23-30, 2001.
doi:10.1109/74.979364

2. Hsiao, F.-R. and K. L. Wong, "Omnidirectional planar folded dipole antenna," IEEE Trans. Antennas Propag., Vol. 52, No. 7, 1898-1902, 2004.
doi:10.1109/TAP.2004.831337

3. Zivanovic, B., T. M. Weller, and C. Costas, "Series-fed microstrip antenna arrays and their application to omni-directional antennas," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 4954-4959, 2012.
doi:10.1109/TAP.2012.2207317

4. Wei, K., Z. Zhang, B. W. Chen, et al. "A triband shunt-fed omnidirectional planar dipole array," IEEE Antennas Wireless Propag. Lett., Vol. 9, 850-853, 2010.
doi:10.1109/LAWP.2010.2069077

5. Lau, K. F. and K. M. Luk, "A wideband monopolar wire-patch antenna for indoor base station applications," IEEE Antennas Wireless Propag. Lett., Vol. 4, 155-157, 2005.
doi:10.1109/LAWP.2005.847432

6. Row, J.-S., S.-H. Yeh, and K.-L. Wong, "A wide-band monopolar plate-patch antenna," IEEE Trans. Antennas Propag., Vol. 50, 1328-1330, 2002.

7. Judasz, T. J. and B. B. Balsley, "Improved theoretical and experimental models for the coaxial colinear antenna," IEEE Trans. Antennas Propag., Vol. 37, No. 3, 289-296, 1989.
doi:10.1109/8.18724

8. Kiang, J. F., "Analysis of linear coaxial antennas," IEEE Trans. Antennas Propag., Vol. 46, No. 5, 636-642, 1998.
doi:10.1109/8.668905

9. Bancroft, R. and B. Bateman, "An omnidirectional planar microstrip antenna," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 3151-3153, 2004.
doi:10.1109/TAP.2004.832338

10. Chen, X., K. Huang, and X. B. Xu, "A novel planar slot array antenna with omnidirectional pattern," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4853-4857, 2011.
doi:10.1109/TAP.2011.2165481

11. Wong, K.-L., F.-R. Hsiao, and T.-W. Chiou, "Omnidirectional planar dipole array antenna," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 624-628, 2004.
doi:10.1109/TAP.2004.823897

12. Edward, B. and D. Rees, "A broadband printed dipole with integrated balun," Microw. J., 339-344, May 1987.

13. Li, R. L., T. Wu, B. Pan, et al. "Equivalent-circuit analysis of a broadband printed dipole with adjusted integrated balun and an array for base station applications," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 2180-2184, 2009.
doi:10.1109/TAP.2009.2021967

14. Zhang, Z.-Y. and C.-B. Zhang, "Wideband omnidirectional printed dipole antenna with coupling feed for wireless communication applications," Progress In Electromagnetics Research C, Vol. 38, 89-99, 2013.

15. Lu, J.-H., S.-W. You, and H.-M. Chin, "Planar dual-band dipole array for LTE/WiMAX access points," Proceedings of ISAP 2014, 329-330, 2014.

16. Yu, Y. F., J. Xiong, and R. Wang, "A wideband omnidirectional antenna array with low gain variation," IEEE Antennas Wireless Propag. Lett., Vol. 15, 386-389, 2016.
doi:10.1109/LAWP.2015.2446757

17. Wang, H., S. He, and Y. F. Yu, "A wideband omnidirectional antenna array," IEEE Antennas Wireless Propag. Lett., Vol. 15, 386-389, 2016.

18. Puente, C., J. Anguera, and C. Borja, "Dual-band dual-polarized antenna array,", US Pat. 6937206B2, 2005.

19. Jayasinghe, J. W., J. Anguera, and D. N. Uduwala, "A high-directivity microstrip patch antenna design by using genetic algorithm optimization," Progress In Electromagnetics Research C, Vol. 37, 131-144, 2013.
doi:10.2528/PIERC13010805

20. Jayasinghe, J. W., D. N. Uduwala, and J. Anguera, "Increasing the directivity of a microstrip patch array by genetic optimization," Journal of National Science Foundation, Vol. 43, No. 1, 83-89, 2015.
doi:10.4038/jnsfsr.v43i1.7918

21. Robers, W. K., "A new wideband balun," Proceedings of the IRE, Vol. 45, 1628-1631, 1957.
doi:10.1109/JRPROC.1957.278293

22. Baeer, R. and J. W. Wolfe, "A printed circuit balun for use with spiral antennas," IRE Trans. on MTT, Vol. 8, 319-325, 1960.

23. Oltmaa, G., "The compensated balun," IEEE Trans. on MTT, 112-119, 1966.
doi:10.1109/TMTT.1966.1126188

24. Kraus, J. D., Antennas: For All Applications, 3rd Ed., 190-193, 2002.