Vol. 75
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-05
Wideband Transmitting Adaptive Digital Beamforming Based on Sub-Band Multiple Linear Constrained Minimum Variance Method
By
Progress In Electromagnetics Research M, Vol. 75, 113-120, 2018
Abstract
This paper describes a wideband transmitting adaptive digital beamforming (ADBF) scheme with nulls in the direction of interference. The scheme partitions the wideband transmit signal into independent sub-bands using an analysis filter bank behind each array element. In each channel, sub-band ADBF weight vector is computed based on the minimum variance criterion with multiple linear constraints to form the sub-band transmit beam. Finally, a wideband transmit adaptive beam is reconstructed through the synthesis filters. Theoretical analysis and simulation experiments show that this algorithm can form a wideband transmit beam with deep nulls, and the pointing direction of the null keeps unchanged regardless of frequency. The algorithm proposed in this paper has little computation load and is efficient to implement in engineering applications.
Citation
Guan Wang Mingwei Shen Jianfeng Li Di Wu Dai-Yin Zhu , "Wideband Transmitting Adaptive Digital Beamforming Based on Sub-Band Multiple Linear Constrained Minimum Variance Method," Progress In Electromagnetics Research M, Vol. 75, 113-120, 2018.
doi:10.2528/PIERM18082101
http://www.jpier.org/PIERM/pier.php?paper=18082101
References

1. Day, D. A., "Fast phase-only pattern nulling for large phased array antennas," IEEE Radar Conference, 1-4, 2009.

2. Smith, S. T., "Optimum phase-only adaptive nulling," IEEE Transactions on Signal Processing, Vol. 47, No. 7, 1835-1843, 1999.
doi:10.1109/78.771033

3. Webster, T., et al., "Phase-only adaptive spatial transmit nulling," IEEE Radar Conference, 0931-0936, 2015.

4. Van, T. and L. Harry, Optimum Array Processing: Part IV of Detection, Estimation and Modulation Theory, Wiley-Interscience, 2002.

5. Smith, R. P., "Constant beamwidth receiving arrays for broad band sonar systems," Acta Acustica United with Acustica, Vol. 23, No. 1, 21-26(6), 1970.

6. Vouras, P. G. and T. D. Tran, "Robust transmit nulling in wideband arrays," IEEE Transactions on Signal Processing, Vol. 62, No. 14, 3706-3719, 2014.
doi:10.1109/TSP.2014.2329653

7. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

8. Donelli, M., T. Moriyama, and M. Manekiya, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.
doi:10.2528/PIERC18012004

9. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089

10. Benedetti, M., M. Donelli, and G. Franceschini, "Effective exploitation of the a priori information through a microwave imaging procedure based on the SMW for NDE/NDT applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 11, 2584-2591, November 2005.
doi:10.1109/TGRS.2005.856630

11. Jain, A., R. Saxena, and S. C. Saxena, Multirate Systems and Filterbanks, 3385-3388, 2011.

12. Weiss, S. and R. W. Stewart, "On adaptive filtering in oversampled subbands,", University of Strathclyde, 1998.

13. Mansour, M. F., "On the optimization of oversampled DFT filter banks," IEEE Signal Processing Letters, Vol. 14, No. 6, 389-392, 2007.
doi:10.1109/LSP.2006.887839