Vol. 77
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-13
Dynamics and Stiffness Analysis of a Homopolar Magnetic Bearing
By
Progress In Electromagnetics Research M, Vol. 77, 29-40, 2019
Abstract
Decreasing eddy current is very important for the realization of stability control of HoMB system. In order to improve the dynamic performance precision of HoMB in the design stage, the dynamics and stiffness analysis of a homopolar magnetic bearing (HoMB) has been studied in this paper. Because the polarities of the magnetic poles were not changed during the rotation of rotor, the effect of eddy-currents was often ignored in the previous researches. However, when the frequencies of vibration caused by external disturbance and control currents are very high, eddy-current effects have significant influence on the performance of HoMB. In order to predict the HoMB performance, guide the HoMB design and control of the HoMB system in high frequency, a dynamics model was built on the equivalent circuit method. Parameters of dynamic Modeling are frequency-dependent. The effect of eddy-currents on the current stiffness was studied. The analysis results show that the eddy current effect on HoMB can be reduced by increasing the air gap, decreasing the laminations thickness and decreasing the laminations conductivity.
Citation
Xiaojun Ren, Jinji Sun, and Cunxiao Miao, "Dynamics and Stiffness Analysis of a Homopolar Magnetic Bearing," Progress In Electromagnetics Research M, Vol. 77, 29-40, 2019.
doi:10.2528/PIERM18091503
References

1. Eaton, D., J. Rama, and S. Singhal, "Magnetic bearing applications & economics," Proc. PCIC, 1-9, Sep. 2010.        Google Scholar

2. Xu, S. L. and J. C. Fang, "A novel conical active magnetic bearing with claw structure," IEEE Transactions on Magnetics, Vol. 50, No. 5, 8101108, 2014.        Google Scholar

3. Ren, X. J., Y. Le, J. J. Sun, et al. "Magnetic flux leakage modeling and optimization of a combined radial-axial hybrid magnetic bearing for DC motor," IET Electric Power Applications, DOI: 10.1049/iet-epa.2016.0259, to be published.        Google Scholar

4. Huang, Z., J. Fang, X. Liu, , and B. Han, "Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent magnet electrical machines," IEEE Transactions on Industrial Electronics, Vol. 63, No. 4, 2027-2035, 2016.        Google Scholar

5. Bai, J. G., X. Z. Zhang, and L. M. Wang, "A flywheel energy storage system with active magnetic bearings," Proc. 2012 Int. Conf. Future Energy, Environ., Mater., Vol. 16, 1124-1128, pt. B, 2012.        Google Scholar

6. Tang, J., J. J. Sun, J. C. Fang, et al. "Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel," Journal of Magnetism & Magnetic Materials, Vol. 329, No. 2, 153-164, 2013.
doi:10.1016/j.jmmm.2012.10.006        Google Scholar

7. Fang, J. C., S. Q. Zheng, and B. C. Han, "AMB vibration control for structural resonance of double-gimbal control moment gyro with high-speed magnetically suspended rotor," IEEE/ASME Transactions on Mechatronics, Vol. 18, No. 1, 32-43, 2013.
doi:10.1109/TMECH.2011.2161877        Google Scholar

8. Fang, J., Y. Le, J. Sun, and K. Wang, "Analysis and design of passive magnetic bearing and damping system for high-speed compressor," IEEE Transactions on Magnetics, Vol. 48, No. 9, 2528-2537, 2012.
doi:10.1109/TMAG.2012.2196443        Google Scholar

9. Noh, M. D., S. Cho, J. Kyung, S. Ro, and J. Park, "Design and implementation of a fault-tolerant magnetic bearing system for turbo molecular vacuum pump," IEEE/ASME Transactions on Mechatronics, Vol. 10, No. 6, 626-631, 2005.
doi:10.1109/TMECH.2005.859830        Google Scholar

10. Gilchrist, U., M. Hosek, J. T. Moura, et al. "Robot drive with magnetic spindle bearings,", USA Patent, US20090243413 A1, 2009.        Google Scholar

11. Hollis, Jr., R. L., "Magnetically levitated fine motion robot wrist with programmable compliance,", USA Patent, US4874998 A, 1987.        Google Scholar

12. Beniak, R. and T. Pyka, "An energy-consumption analysis of a tri-wheel mobile robot," International Journal of Robotics and Automation, Vol. 31, No. 1, 2016, DOI: 10.2316/Journal.206.2016.1.206-4079.
doi:10.2316/Journal.206.2016.1.206-4079        Google Scholar

13. Liang, L., P. Tang, B. Chen, et al. "Dynamical modelling and structural parameter optimization of a novel spiral in-pipe robot," International Journal of Robotics and Automation, Vol. 31, No. 1, 2016, DOI: 10.2316/Journal.206. 2016.1.206-4170.
doi:10.2316/Journal.206.2016.1.206-4170        Google Scholar

14. Zhu, Y., X. Sun, and X. Wang, "Locomotion system design and dynamics analysis of a new telescopic miniature in-pipe robot," International Journal of Robotics and Automation, Vol. 31, No. 2, 2016, DOI: 10.2316/Journal.206.2016.2.206-4361.
doi:10.2316/Journal.206.2016.2.206-4361        Google Scholar

15. Higuchi, T., K. Oka, and H. Sugawara, "Clean room robot with noncontact joints using magnetic bearings," Advanced Robotics, Vol. 7, No. 2, 105-119, 1993.
doi:10.1163/156855393X00078        Google Scholar

16. Selmy, M., M. Fanni, and A. M. M. Mohamed, "Design and control of a novel contactless active robotic joint using AMB," 2015 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 144-149, Dec. 2015, DOI: 10.1109/ICARSC.
doi:10.1109/ICARSC.2015.12        Google Scholar

17. Schweitzer, G. and E. H. Maslen, Magnetic Bearings Theory, Design and Application to Rotating Machinery, Springer-Verlag, 2009.

18. Zhang, W. and H. Zhu, "Improved model and experiment for AC-DC three-degree-of-freedom hybrid magnetic bearing," IEEE Transactions on Magnetics, Vol. 49, No. 11, 5554-5565, 2013.
doi:10.1109/TMAG.2013.2271754        Google Scholar

19. Fang, J. C., et al. "Homopolar 2-pole radial permanent-magnet biased magnetic bearing with low rotating loss," IEEE Transactions on Magnetics, Vol. 48, No. 8, 2293-2303, 2012.
doi:10.1109/TMAG.2012.2192131        Google Scholar

20. Eryong, H. and L. Kun, "A novel structure for low-loss radial hybrid magnetic bearing," IEEE Transactions on Magnetics, Vol. 47, No. 12, 4725-4733, 2011.
doi:10.1109/TMAG.2011.2160649        Google Scholar

21. Kim, H.-Y. and C.-W. Lee, "Analysis of eddy-current loss for design of small active magnetic bearings with solid core and rotor," IEEE Transactions on Magnetics, Vol. 40, No. 5, 3293-3301, 2004.
doi:10.1109/TMAG.2004.834620        Google Scholar

22. Muramatsu, K., T. Shimizu, A. Kameari, I. Yanagisawa, S. Tokura, O. Saito, and C. Kaido, "Analysis of eddy currents in surface layer of laminated core in magnetic bearing system using leaf edge elements," IEEE Transactions on Magnetics, Vol. 42, No. 4, 883-886, 2006.
doi:10.1109/TMAG.2006.872518        Google Scholar

23. Tian, Y., Y. Sun, and L. Yu, "Modeling of switching ripple currents (SRCs) for magnetic bearings including eddy current effects," International Journal of Applied Electromagnetics and Mechanics, Vol. 33, 791-799, 2012.        Google Scholar

24. Wang, J., H. Lin, Y. Huang, and L. Huang, "Numerical analysis of 3D eddy current fields in laminated media under various frequencies," IEEE Transactions on Magnetics, Vol. 48, No. 2, 267-270, 2012.
doi:10.1109/TMAG.2011.2174620        Google Scholar

25. Bachovchin, K. D., J. F. Hoburg, and R. F. Post, "Magnetic fields and forces in permanent magnet levitated bearings," IEEE Transactions on Magnetics, Vol. 48, No. 7, 2112-2120, 2012.
doi:10.1109/TMAG.2012.2188140        Google Scholar