Vol. 75
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-27
Effect of Quiet Zone Ripples on Antenna Pattern Measurement
By
Progress In Electromagnetics Research M, Vol. 75, 49-60, 2018
Abstract
Compact antenna test range (CATR) is one of the most commonly used antenna measurement techniques, particularly in the microwave/millimetre wave range. A conventional industry standard for the quiet zone of a CATR is ±0.5 dB amplitude variation and ±5º phase variation to conduct measurement with acceptable accuracy. Such a high standard, however, has not been rigorously verified in theory. And it is in contrast to 22.5º phase variation condition for the far-field method. Being inspired by many measurements, where the quiet zone is not up to the industry standard while satisfactory results are still obtained, this paper systematically investigates the effect of quiet zone performance on the radiation pattern measurement. It aims at searching for a guideline specifications for the construction of a CATR. Theoretical models have been built to predict the quiet zone performance on the antenna pattern measurement, particularly on the main beam. Many factors have been considered, such as amplitude and phase ripple, amplitude/phase taper, and electrical size. In coupling with experimental study, it is shown that a much more relaxed condition can be followed depending on the required measurement accuracy.
Citation
Xiaoming Liu Junsheng Yu , "Effect of Quiet Zone Ripples on Antenna Pattern Measurement," Progress In Electromagnetics Research M, Vol. 75, 49-60, 2018.
doi:10.2528/PIERM18091701
http://www.jpier.org/PIERM/pier.php?paper=18091701
References

1. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., John Wiley & Sons, New Jersey, 2005.

2. Rieckmann, C., C. G. Parini, R. S. Donnan, and J. Dupuy, "Experimental validation of the design performance for a spherical main-mirror tri-reflector antenna CATR operating at 90 GHz," Proceedings of 28th ESA Antenna Workshop on Space Antenna Systems and Technologies,, WPP-247, Vol. 1, 395-400, May 31-June 3, 2005.

3., , http://www.space-airbusds.com/en/equipment/compensated-compact-ranges-wjq.html, Accessed June 6, 2016.

4., , https://www.near-field.com/products/CompactAntennaTestRangeSolutions.aspx,AccessedJune 8, 2016.

5., , IEEE Std 149TM-1979(R2008) Revision of IEEE Std149-1965.

6. Yu, J. and X. Chen, Millimeter Wave and Terahertz Antenna Measurement Technique, Science Publication Press, Beijing, 2015.

7. Beeckman, P. A., "High-precision measurements on a compact antenna test range," Electronic Letters, Vol. 19, 769-770, 1983.
doi:10.1049/el:19830524

8. Viikari, V., et al., "Antenna pattern correction technique based on an adaptive array algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, 2194-2199, 2007.
doi:10.1109/TAP.2007.901844

9. Wayne, D., J. A. Fordham, and J. McKenna, "Non-ideal quiet zone effects on compact range measurements," 2015 9th European Conference on Proceedings of Antennas and Propagation (EuCAP), Lisbon, Portugal, April 12-17, 2015.

10. Gregson, S. F. and C. G. Parini, "Examination of the effect of common CATR quiet zone specifications on antenna pattern measurement uncertainties," Loughborough Antennas & Propagation Conference (LAPC 2017), Loughborough, UK, November 13-14, 2017.

11. Viikari, V., et al., "A feed scanning based APC technique for compact antenna test ranges," IEEE Transactions on Antennas and Propagation, Vol. 53, 3160-3165, 2005.
doi:10.1109/TAP.2005.856369

12. Karttunen, A., et al., "Antenna tests with a hologram-based CATR at 650 GHz," IEEE Transactions on Antennas and Propagation, Vol. 57, 711-710, 2009.
doi:10.1109/TAP.2009.2013428

13. Habersack, J., J. Hartmann, and H.-J. Steiner, "Quiet zone field enlargement of dual reflector compact ranges for testing of complex satellite antenna farms," 3rd European Conference on Proceeding of Antennas and Propagation, 2009, EuCAP 2009, 924-927, Berlin, Germany, March 23-27, 2009.

14. Capozzoli, A., G. D’Elia, and A. Liseno, "Phaseless characterisation of compact antenna test ranges," IET Microw. Antennas Propag., Vol. 1, 860-866, 2007.
doi:10.1049/iet-map:20070002

15. Li, Z. P., et al., "Realization of wideband hologram compact antenna test range by linearly adjusting the feed location," IEEE Transactions on Antennas and Propagation, Vol. 62, 5628-5633, 2014.
doi:10.1109/TAP.2014.2351072

16. Hartmann, J., J. Habersack, and H.-J. Steiner, "A new large compensated compact range for measurement of future satellite generations ," Proceedings of 24th AMTA 2002, Cleveland, US, November 03-08, 2002.

17. Dudok, E., D. Fasold, and H.-J. Steiner, "Development of an optimized compact test range," Proceedings of 11th ESTEC Antenna Workshop on Antenna Measurements, 87-94, Goeteborg, Sweden, June 20-22, 1988.

18. Smith, G. F., Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications, Wiley & IEEE Press, New York, 1998.

19. Wang, L., Y. Guo, and W.Wu, "Wideband 60 GHz circularly polarised stacked patch antenna array in low-temperature co-fired ceramic technology," IET Microw. Antennas Propag., Vol. 9, 436-445, 2015.
doi:10.1049/iet-map.2014.0254

20. Vera Lopez, A. L., W. T. Khan, and J. Papapolymerou, "Orientation study to minimise coupling effects in radiation patterns of dual-packaged compact millimeter-wave antennas," IET Microw. Antennas Propag., Vol. 9, 159-165, 2015.
doi:10.1049/iet-map.2014.0092

21. Cappellin, C., S. Busk Sørensen, and M. Paquay, "An accurate and efficient error predictor tool for CATR measurements," 2010 Proceedings of the Fourth European Conference on Proceedings of Antennas and Propagation (EuCAP), Barcelona, Spain, April 12-16, 2010.

22. Mitchell, R. L., "On the Reduction of Stray Signal Errors in Antenna Pattern Measurements," IEEE Transactions on Antennas and Propagation, Vol. 43, 629-630, 1995.
doi:10.1109/8.387181

23. Viikari, V. and A. V. Raisanen, "Antenna pattern correction technique based on signal-to-interference ratio optimization," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 267-270, 2007.
doi:10.1109/LAWP.2007.897515