Department of Optical Systems
Research Institute of Semiconductor Devices
Russia
Homepage1. Dunaevskn, G. E., V. I. Suslyaev, V. A. Zhuravlev, A. V. Badin, K. V. Dorozhkin, M. A. Kanygin, O. V. Sedelnikova, L. G. Bulusheva, and A. V. Okotrub, "Electromagnetic response of anisotropic polystyrene composite materials containing oriented multiwall carbon nanotubes," 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 12, 2014. Google Scholar
2. Vales-Pinzn, C., J. J. Alvarado-Gil, R. Medina-Esquivel, and P. Marttnez-Torres, "Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field," Journal of Magnetism and Magnetic Materials, Vol. 369, 114-121, 2014.
doi:10.1016/j.jmmm.2014.06.025 Google Scholar
3. Zyatkov, D., A. Yurchenko, and V. Yurchenko, "Detection of the change of a magnetic field in the environment by magnetic fluid," J. Phys.: Conf. Ser., Vol. 881, 012037, 2017.
doi:10.1088/1742-6596/881/1/012037 Google Scholar
4. Chen, Y., Q. Han, T. Liu, X. Lan, and H. Xiao, "Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid," Optics Letters, Vol. 38, No. 20, 3999-4001, 2013.
doi:10.1364/OL.38.003999 Google Scholar
5. Zyatkov, D., A. Yurchenko, V. Balashov, B. Yurchenko, and A. Borisov, "Spectral characteristics of magnetic fluid with particles of different dimensions in the terahertz frequency range," 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), 2707-2711, St. Petersburg, Russia, May 22–25, 2017. Google Scholar
6. Yannopapas, V., S. H. L. Klapp, and S. D. Peroukidis, "Magneto-optical properties of liquid-crystalline ferrofluids," Optical Materials Express, Vol. 6, No. 8, 2681-2688, 2016.
doi:10.1364/OME.6.002681 Google Scholar
7. Pei, L., H. Pang, X. Ruan, X. Gong, and S. Xuan, "Magnetorheology of a magnetic fluid based on Fe3O4 immobilized SiO2 coreshell nanospheres: Experiments and molecular dynamics simulations," RSC Adv., Vol. 7, 8142-8150, 2017.
doi:10.1039/C6RA28436A Google Scholar
8. Polley, D., A. Ganguly, A. Barman, and R. K. Mitra, "Polarizing effect of aligned nanoparticles in terahertz frequency region," Optics Letters, Vol. 38, No. 15, 2754-2756, 2013.
doi:10.1364/OL.38.002754 Google Scholar
9. Huisman, T. J., R. V. Mikhaylovskiy, A. V. Telegin, Yu. P. Sukhorukov, A. B. Granovsky, S. V. Naumov, Th. Rasing, and A. V. Kimel, "Terahertz magneto-optics in the ferromagnetic semiconductor HgCdCr2Se4," Appl. Phys. Lett., Vol. 106, 132411, 2015.
doi:10.1063/1.4916884 Google Scholar
10. Chen, S., F. Fan, S. Chang, Y. Miao, M. Chen, J. Li, X. Wang, and L. Lin, "Tunable optical and magneto-optical properties of ferrofluid in the terahertz regime," Optics Express, Vol. 22, No. 6, 6313-6321, 2014.
doi:10.1364/OE.22.006313 Google Scholar
11. Liu, X., L. Xiong, X. Yu, S. He, B. Zhang, and J. Shen, "Magnetically controlled terahertz modulator based on Fe3O4 nanoparticle ferrofluids," J. Phys. D: Appl. Phys., Vol. 51, No. 10, 105003, 2018.
doi:10.1088/1361-6463/aaab97 Google Scholar
12. Shalaby, M., M. Peccianti, Y. Ozturk, and R. Morandotti, "Terahertz Faraday rotation in a magnetic liquid: High magneto-optical gure of merit and broadband operation in a ferrofluid," Appl. Phys. Lett., Vol. 100, No. 24, 241107, 2012.
doi:10.1063/1.4729132 Google Scholar
13. Zhang, D., B. Gokce, and S. Barcikowski, "Laser synthesis and processing of colloids: Fundamentals and applications," Chem. Rev., Vol. 117, No. 5, 3990-4103, 2017.
doi:10.1021/acs.chemrev.6b00468 Google Scholar
14. Svetlichnyi, V. A., A. V. Shabalina, I. N. Lapin, D. A. Goncharova, D. A. Velikanov, and A. E. Sokolov, "Characterization and magnetic properties study for magnetite nanoparticles obtained by pulsed laser ablation in water," Applied Physics A, Vol. 123, No. 12, 2017.
doi:10.1007/s00339-017-1390-7 Google Scholar
15. Sukhov, I. A., G. A. Shafeev, V. V. Voronov, M. Sygletou, E. Stratakis, and C. Fotakis, "Generation of nanoparticles of bronze and brass by laser ablation in liquid," Applied Surface Science, Vol. 302, 79-82, 2014.
doi:10.1016/j.apsusc.2013.12.018 Google Scholar
16. Jakobi, J., S. Petersen, A. Menndez-Manjn, P. Wagener, and S. Barcikowski, "Magnetic alloy nanoparticles from laser ablation in cyclopentanone and their embedding into a photoresist," Langmuir, Vol. 26, No. 10, 6892-6897, 2010.
doi:10.1021/la101014g Google Scholar
17. Svetlichnyi, V. A., A. V. Shabalina, I. N. Lapin, D. A. Goncharova, D. A. Velikanov, and A. E. Sokolov, "Study of iron oxide magnetic nanoparticles obtained via pulsed laser ablation of iron in air," Applied Surface Science, Vol. 462, 226-236, 2018.
doi:10.1016/j.apsusc.2018.08.116 Google Scholar
18. Pyanzina, E., "Bidisperse ferrofluids with chain aggregates: Microstructure and macroscopic properties," Magnetohydrodynamics, Vol. 49, No. 3/4, 297-300, 2013. Google Scholar
19. Zakinyan, A., Y. Dikansky, and M. Bedzhanyan, "Electrical properties of chain microstructure magnetic emulsions in magnetic field," Journal of Dispersion Science and Technology, Vol. 35, 111-119, 2014.
doi:10.1080/01932691.2013.769109 Google Scholar
20. Rousan, A., H. M. El Ghanem, and N. Yusuf, "Faraday rotation and chain formation in magnetic fluids," IEEE Transactions on Magnetics, Vol. 25, No. 4, 3121-3124, 1989.
doi:10.1109/20.34384 Google Scholar
21. Zyatkov, D., A. Yurchenko, and E. Yurchenko, "Capacitive sensor of weak magnetic field on the basis of feromagnetic fluid with micro- and nanoscale particles," 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), 3176-3181, St. Petersburg, Russia, May 22–25, 2017. Google Scholar