Vol. 76
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-11
Microstrip Moisture Sensor Based on Microstrip Patch Antenna
By
Progress In Electromagnetics Research M, Vol. 76, 177-185, 2018
Abstract
A miniaturized U-Shape patch sensor (15 mm×15 mm) was designed at dual resonating frequencies (fr) 5.2 GHz and 6.8 GHz). The proposed design printed on FR4 material with a thickness of 1.676 mm and relative permittivity 4.4. To simulate the performances of the proposed design, the CST Microwave Studio (CST MWS) was used. The reflection coefficient of U-Shape patch sensor was measured. Basmati rice was investigated, and bulk density was increased with increase of moisture content, hence varied from 554.3 to 591 kg/m3. It has the longest average rice length (L) 7.2 mm, average width (W) 1.61 mm, and L/W ratio 4.47. The percentage of moisture was varied from 10.12% to 20.35% calculated on a wet weight basis. The lowest mean relative error (MRE) determined between predicted moisture content (PMC) and actual moisture content (AMC) was 0.55% at dual frequencies.
Citation
Sweety Jain, Pankaj Kumar Mishra, Vandana Vikas Thakery, and Jyoti Mishra, "Microstrip Moisture Sensor Based on Microstrip Patch Antenna," Progress In Electromagnetics Research M, Vol. 76, 177-185, 2018.
doi:10.2528/PIERM18092602
References

1. Troughton, P., "High Q-factor resonator in microstrip," Electron Lett., Vol. 4, 520-522, 1968.
doi:10.1049/el:19680405

2. Troughton, P., "Measurement techniques in microstrip," Electron Lett., Vol. 5, 25-26, 1969.
doi:10.1049/el:19690017

3. Wolff, I. and N. Koppik, "Microstrip ring resonator and dispersion measurement on microstrip lines," Electron Lett., Vol. 7, 779-781, 1971.
doi:10.1049/el:19710532

4. Edwards, C., "Microstrip measurements," IEEE MTT-S Int. Microwave Symp. Digest, 338-341, 1982.
doi:10.1109/MWSYM.1982.1130712

5. Bernard, P. A. and J. M. Gautray, "Measurement of dielectric constant using a microstrip ring resonator," IEEE Trans. Microwave Theory Tech., Vol. 39, 592-595, 1991.
doi:10.1109/22.75310

6. Stephenson, I. M. and B. Ester, "Resonant techniques for establishing the equivalent circuits of small discontinuities in microstrip," Electron Lett., Vol. 7, 582-584, 1971.
doi:10.1049/el:19710393

7. Hoefer, W. J. R. and A. Chattopadhyay, "Evaluation of the equivalent circuit parameters of microstrip discontinuities through perturbation of a resonant ring," IEEE Trans. Microwave Theory Tech., Vol. 23, 1067-1071, 1975.
doi:10.1109/TMTT.1975.1128746

8. Farrar, A. and A. T. Adams, "Computation of lumped microstrip capacities by matrix methods - Rectangular sections and end effects," IEEE Trans. Microwave Theory Tech., Vol. 19, 495-496, 1971.
doi:10.1109/TMTT.1971.1127556

9. Napoli, L. S. and J. J. Hughes, "Foreshortening of microstrip open circuits on alumina substrates," IEEE Trans. Microwave Theory Tech., Vol. 19, 559-561, 1971.
doi:10.1109/TMTT.1971.1127575

10. James, D. S. and S. H. Tse, "Microstrip end effects," Electron Lett., Vol. 8, 46-47, 1972.
doi:10.1049/el:19720035

11. Denlinger, E. J., "Losses of microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 28, 513-522, 1980.
doi:10.1109/TMTT.1980.1130112

12. Katehi, P. B. and N. Alexopoulos, "Frequency-dependent characteristics of microstrip discontinuities in millimeter-wave integrated circuits," IEEE Trans. Microwave Theory Tech., Vol. 33, 1029-1035, 1985.
doi:10.1109/TMTT.1985.1133166

13. Jackson, R. W. and D. M. Pozar, "Full-wave analysis of microstrip openend and gap discontinuities," IEEE Trans. Microwave Theory Tech., Vol. 33, 1036-1042, 1985.
doi:10.1109/TMTT.1985.1133167

14. Owens, R. P., "Curvature effect in microstrip ring resonator," Electron Lett., Vol. 12, 356-357, 1976.
doi:10.1049/el:19760273

15. Kim, K.-B., J.-H. Kim, S. S. Lee, and S. H. Noh, "Measurement of grain moisture content using microwave attenuation at 10.5 GHz and moisture density," IEEE Transactions on Instrumentation and Measurement, Vol. 51, No. 1, 72-77, 2002.
doi:10.1109/19.989904

16. Zajıcek, R., T. Smejkal, L. Oppl, and J. Vrba, "Medical diagnostics using reflection method and waveguide probes - Feasibility study," PIERS Proceedings, 759-762, Hangzhou, China, Mar. 24–28, 2008.

17. Abbas, Z., R. Mokhtar, K. Khalid, M. Hashim, and S. A. Aziz, "RDWG technique of determination of moisture content in oil palm fruits," Eur. Phys. J. Appl. Phys., Vol. 40, No. 2, 207-210, 2007.
doi:10.1051/epjap:2007127

18. Khalid, K., "The application of microstrip sensors for determination of moisture content in Hevea rubber latex," J. Microwave Power Electromagn Energy, Vol. 23, No. 1, 45-51, 1988.
doi:10.1080/08327823.1988.11688036

19. Ghretli, M. M., K. Khalid, I. V. Grozescu, M. H. Sahri, and Z. Abbas, "Dual frequency microwave moisture sensor based on circular microstrip antenna," IEEE Sen. J., Vol. 7, 1749-1756, 2007.
doi:10.1109/JSEN.2007.908920

20. Gadani, D., V. Rana, S. Bhatnagar, A. Prajapati, and A. Vyas, "Effect of salinity on the dielectric properties of water," Indian J. Pure. Appl. Phys., Vol. 50, 405-410, 2012.

21. Deffendol, C. and C. Furse, "Microstrip antennas for dielectric property measurement," Antennas and Propagation Society International Symposium, 1954-1956, IEEE, Orlando, FL, 1999.

22. Jilani, M. T., W. P. Wen, M. A. Zakaniya, L. Y. Cheong, and M. Z. U. Rehman, "An improved design of microwave biosensor for measurement of tissue moisture," IEEE, 2014.

23. Joshi, K. K., M. Abegaonkar, R. N. Karekar, and R. C. Aiyer, "Microstrip ring resonator as a moisture sensor for wheat grains," IEEE, 1679-1682, 1997.

24. Solanki, L. S., S. Singh, and N. Garg, "Determination of soil suitability for agriculture farming using microwave analysis," IEEE, 421-426, 2017.

25. Kim, K. B., J. H. Kim, S. S. Lee, and S. H. Noh, "Measurement of grain moisture content using microwave attenuation at 10.5 GHz and moisture density," IEEE Trans. Instrum. Meas., Vol. 51, 72-77, 2002, DOI: 10.1109/19.989904.
doi:10.1109/19.989904

26. Mun, H. K., K. Y. You, and M. N. Dimon, "Rice grain moisture determination using microstrip wide ring & microstrip coupled line sensors," AJAP, 112-120, 2015.