Vol. 88
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-11-30
Sodium Salt of Polyethylene-Co-Methacrylic Acid Ionomer/Polyaniline Binary Blends for EMI Shielding Applications
By
Progress In Electromagnetics Research C, Vol. 88, 207-218, 2018
Abstract
Improvement of properties of polymeric materials through blending is a way to obtain products with highly adapted performance for specific applications. The present work reports the design and preparation of binary blend films of poly (ethylene-co-methacrylic acid) neutralized using sodium salt (EMAANa) and nano polyaniline doped with hydrochloric acid (nano PANI-HCl) or toluene sulfonic acid (nano PANI-TSA) with the aim of achieving improved thermal stability, DC conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of EMAANa. The binary blends were prepared by solution blending using a solvent mixture of toluene/1-butanol (90:10) at 65 °C. The hybrid materials were characterized and evaluated by FTIR, UV-Vis spectroscopy, XRD spectroscopy and thermogravimetric analysis (TGA). The electrical conductivity of the PANI and PANI/EMAANa blends was measured by four-probe method. The EMI shielding effectiveness was studied using a wave-guide coupled to an Agilent Synthesized Sweeper 8375A and a Hewlett-Packard spectrum analyzer 7000 in the X band frequency range (8-12 GHz). FTIR indicates a π-π and hydrogen bonding interaction between PANI and EMAANa, enabling the PANI to be adsorbed in the ionomer. The TGA of the blends show similar weight loss pattern with nano PANI-TSA-EMAANa exhibiting slightly lower weight loss below the decomposition temperature. The TGA results show that thermal stability of the blends is better compared to pure EMAANa. The results of measurements of electrical conductivity and EMI SE demonstrates that PANI was successfully blended into the EMAANa substrate.
Citation
Kingsley Kema Ajekwene, Jelmy Elavathingal Johny, and Thomas Kurian, "Sodium Salt of Polyethylene-Co-Methacrylic Acid Ionomer/Polyaniline Binary Blends for EMI Shielding Applications," Progress In Electromagnetics Research C, Vol. 88, 207-218, 2018.
doi:10.2528/PIERC18093003
References

1. Hirasawa, E., Y. Yamamoto, K. Tadano, and S. Yano, "Effect of metal cation type on the structure and properties of ethylene lonomers," J. Appl. Polym. Sci., Vol. 42, 351-362, 1991.
doi:10.1002/app.1991.070420207

2. Mathias, L. J., , Learning Center/ionomer, Accessed June 2, 2018, Available: www.pslc.ws/macrog/Polymer Science.

3. Nandi, A., D. G. Gupta, and A. K. Banthia, "Sulfonated polybutadiene random ionomer as stabilizer for colloidal copper nanoparticles," Colloids Surf. A: Physicochem Eng. Aspects, Vol. 197, 119-124, 2002.
doi:10.1016/S0927-7757(01)00853-6

4. Capek, I., "Nature and properties of ionomer assemblies II," Adv. in Colloid Interface Sci., Vol. 118, 73-112, 2005.
doi:10.1016/j.cis.2005.06.005

5. Chodak, I. and I. Krupa, "Percolation effect and mechanical behavior of carbon black filled polyethylene," J. Mat. Sci. Letters, Vol. 18, 1457-1459, 1991.
doi:10.1023/A:1006665527806

6. Castillo-Ortega, M. M., J. C. Encinas, D. E. Rodriguez, and R. Olayo, "Preparation and characterization of electroconductive polypyrrole-thermoplastic composites," J. Appl. Polym. Sci., Vol. 81, No. 6, 1498-1506, 2001.
doi:10.1002/app.1578

7. Carinhana, Jr, D., R. Faez, A. F. Nogueira, and M.-A. De Paoli, "Photoelectrochemical properties of PANI-DBSA/EPDM blends," Synth. Met., Vol. 121, 1569-1570, 2001.
doi:10.1016/S0379-6779(00)01290-X

8. Koul, S., R. Chandra, and S. K. Dhawan, "Conducting polyaniline composite: A reusable sensor material for aqueous ammonia," Sens. Actuat. B, Vol. 75, 151-9, 2001.
doi:10.1016/S0925-4005(00)00685-7

9. Gao, J., J.-M. Sansinena, and H.-L. Wang, "Chemical vapor driven polyaniline sensor/actuators," Synth. Met., Vol. 135-136, 809-810, 2003.
doi:10.1016/S0379-6779(02)00883-4

10. Gerard, M., A. Chaubey, and B. D. Malhotra, "Application of conducting polymers to biosensors," Biosensors & Bioelectronics, Vol. 17, No. 5, 345-349, 2002.
doi:10.1016/S0956-5663(01)00312-8

11. Falcao, E. H. L. and W. M. De Azevedo, "Polyaniline-poly(vinyl alcohol) composite as an optical recording material," Synth. Met., Vol. 128, 149-154, 2002.
doi:10.1016/S0379-6779(01)00659-2

12. Faez, R., I. M. Martin, M.-A. De Paoliand, and M. C. Rezende, "Microwave properties of EPDM/PANI-DBSA blends," Synth. Met., Vol. 119, 435-6, 2001.
doi:10.1016/S0379-6779(00)01283-2

13. Castillo-Ortega, M. M., T. Del Castillo-Castro, J. C. Encinas, M. Perez-Tello, A. De Paoli Marco, and R. Olayo, "Electrically conducting polyaniline-PBMA composite films obtained by extrusion," J. Appl. Polym. Sci., Vol. 89, 179-183, 2003.
doi:10.1002/app.12176

14. Joseph, N., J. Varghese, and M. T. Sebastian, "Self assembled polyaniline nanofibers with enhanced electromagnetic shielding properties," RSC Adv., Vol. 5, 20459-20466, 2015.
doi:10.1039/C5RA02113H

15. Gairola, S. P., M. Verma, L. Kumar, M. A. Dar, M. Annapoorni, and R. K. Kotnala, "Enhanced microwave absorption properties in polyaniline and nano-ferrite composite in X-band," Synth. Met., Vol. 160, No. 21-22, 2315-2318, 2010.
doi:10.1016/j.synthmet.2010.08.025

16. Dar, M. A., R. K. Kotnala, V. Verma, J. Shah, W. A. Siddiqui, and M. Alam, "High magneto-crystalline anisotropic core-shell structured MnO.5ZnO.5Fe2O4/polyaniline nanocomposites prepared by in situ emulsion polymerization," J. Phys. Chem. C, Vol. 116, 5277-5287, 2012.
doi:10.1021/jp205652d

17. Joseph, N., J. Varghese, and M. T. Sebastian, "A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks," J. Mater. Chem. C, Vol. 4, 999-1008, 2016.
doi:10.1039/C5TC03080C

18. Su, S.-J. and N. Kuramoto, "Synthesis of processable polyaniline complexed with anionic surfactant and its conducting blends in aqueous and organic system," Synth. Met., Vol. 108, No. 2, 121-126, 2000.
doi:10.1016/S0379-6779(99)00185-X

19. Barbero, C., H. J. Salavagione, D. F. Acevedo, D. E. Grummelli, F. Garay, G. A. Planes, G. M. Morales, and M. C. Miras, "Novel synthetic methods to produce functionalized conducting polymers I. Polyanilines," Electrochimica Acta, Vol. 49, No. 22-23, 3671-3686, 2004.
doi:10.1016/j.electacta.2003.11.035

20. Yang, J. P., R. J. Planes, A. Pron, and M. Nechtschein, "Preparation of low density polyethylene-based polyaniline conducting polymer composites with low percolation threshold via extrusion," Synth. Met., Vol. 93, 169-173, 1998.
doi:10.1016/S0379-6779(97)04093-9

21. Castillo-Ortega, M. M., D. E. Rodriguez, J. C. Encinas, M. Plascencia, F. A. Mendez-Velarde, and R. Olayo, "Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly(n-butyl methacrylate) composites," Sens. Actuat. B, Vol. 85, 19-25, 2002.
doi:10.1016/S0925-4005(02)00045-X

22. Wang, Y., H.-Q. Xie, Y. Cai, and J. Guo, "Synthesis and properties of polyaniline/sodium and zinc ionomer composites," Polym. J., Vol. 29, No. 11, 875-880, 1997.
doi:10.1295/polymj.29.875

23. Xie, H.-Q., Q.-L. Pu, and D. Xie, "Preparation of conductive polyaniline-sulfonated EPDM ionomer composites from in situ emulsion polymerization and study of their properties," J. Appl. Polym. Sci., Vol. 93, 2211-2217, 2004.
doi:10.1002/app.20737

24. Morgan, H., P. J. S. Foot, and N. W. Brooks, "The effects of composition and processing variables on the properties of thermoplastic polyaniline blends and composites," J. Mat. Sci., Vol. 36, No. 22, 5369-5377, 2001.
doi:10.1023/A:1012480120667

25. Mathew, H., V. S. Punnackal, S. Kuriakose, B. S. Kumari, and A. Manuel, "Synthesis and electrical characterization of polyaniline-multiwalled carbon nanotube composites with different dopants," Int. J. Sci. Res. Pub., Vol. 3, No. 8, 1-10, 2013.

26. Kumar, A., V. Kumar, M. Kumar, and K. Awasthi, "Synthesis and characterization of hybrid PANI/MWCNT nanocomposites for EMI applications," Polymer Composites, 2017, doi 10.1002/pc.24418.

27. Abdullah, E. T., R. S. Ahmed, S. M. Hassan, and A. N. Naje, "Synthesis and characterization of PANI and polyaniline/multi walled carbon nanotube composite," Int. J. Application or Innovation Eng. Mgt., Vol. 4, No. 9, 130-134, 2015.

28. Ratheesh, R. and K. Viswanathan, "Chemical polymerization of aniline using para-toluene sulphonic acid," IOSR J. Appl. Phy., Vol. 6, No. 1, 1-9, 2014.
doi:10.9790/4861-06120109

29. Rafeeq, S. N. and W. Z. Khalaf, "Preparation, characterization and electrical conductivity of doped polyaniline with (HCL and P-TSA)," The 5th International Scientific Conference for Nanotechnology and Advanced Materials and Their Applications ICNAMA, 3-4, 2015.

30. Chakraborty, G., K. Gupta, D. Rana, and A. K. Meikap, "Effect of multiwalled carbon nanotubes on electrical conductivity and magnetoconductivity of polyaniline," Adv. Nat. Sci.: Nanosci. Nanotechnol., Vol. 3, 1-8, 2012.

31. Babu, V. J., S. Vempati, and S. Ramakrishna, "Conducting polyaniline-electrical charge transportation," Mat. Sci. Applications, Vol. 4, 1-10, 2013.

32. Bachhav, S. G. and D. R. Patil, "Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites and its electrical percolation behavior," Amer. J. Mat. Sci., Vol. 5, No. 4, 90-95, 2015.

33. Painter, P. C., B. A. Brozoski, and M. M. Coleman, "FTIR studies of calcium and sodium ionomers derived from an ethylene-methacrylic acid and copolymer," J. Polym. Sci.: Polym. Phy., Vol. 20, No. 6, 1069-1080, 1982.
doi:10.1002/pol.1982.180200614

34. Kutsumizu, S., H. Hara, H. Tachino, K. Shimabayashi, and S. Yano, "Infrared spectroscopic study of the binary blends of sodium and zinc salt ionomers produced from poly(ethylene-co-methacrylic acid)," Macromolecules, Vol. 32, No. 19, 6340-6347, 1999.
doi:10.1021/ma9905728

35. Reynolds, P. J. and A. Surlyn®, "Ionomer as a self-healing and self-sensing composite,", MRes Thesis, Department of Metallurgy and Materials, University of Birmingham, UK, 2012.

36. Ramos, J. M., M. T. de M Cruz, A. C. Costa, Jr., O. Versiane, and C. A. T. Soto, "Fourier transform infrared spectrum: Vibrational assignments using density functional theory and natural bond orbital analysis of the bis (guanido acetate) nickel (II) complex," Science Asia, Vol. 37, 247-255, 2011.
doi:10.2306/scienceasia1513-1874.2011.37.247

37. Abdullah, E. T., S. M. Hassan, and R. S. Ahmed, "Electrical properties of polyani-line/functionalized multi walled carbon nanotubes nanocomposite," Int. J. Current Eng. Technol., Vol. 6, No. 2, 617-621, 2016.

38. Wu, T.-M. and Y.-W. Lin, "Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties," Polym., Vol. 47, 3576-3582, 2006.
doi:10.1016/j.polymer.2006.03.060

39. Gajendran, P. and R. Saraswathi, "Polyaniline-carbon nanotube composites," Pure Appl. Chem., Vol. 80, No. 11, 2377-2395, 2008.
doi:10.1351/pac200880112377

40. Kutsumizu, S., H. Hara, H. Tachino, K. Shimabayashi, and S. Yano, "Infrared spectroscopic study of the binary blends of sodium and zinc salt ionomers produced from poly(ethylene-co-methacrylic acid)," Macromolecules, Vol. 32, 6340-6347, 1999.
doi:10.1021/ma9905728

41. Pineri, M. and A. Eisenberg, "Structure and properties of ionomers," Nato Science Series C, Mathematical and Physical Sciences D, Vol. 198, Reidel Dordrecht, Netherlands, 1987.

42. Schlick, S., Ionomers: Characterization, Theory and Applications, Taylor and Francis, CRC Press, Boca Raton, FL, 1996.

43. Gazotti, Jr., W. A., G. Casalbore-Miceli, S. Mitzakoff, A. Geri, M. C. Gallazzi, and M.-A. De Paoli, "Conductive polymer blends as electrochromic materials," Electrochimica Acta, Vol. 44, 1965-1971, 1999.
doi:10.1016/S0013-4686(98)00305-3

44. Shah, R. K. and D. R. Paul, "Comparison of nanocomposites prepared from sodium, zinc and lithium ionomers of ethylene/methacrylic acid copolymers," Macromolecules, Vol. 39, No. 9, 3327-3336, 2006.
doi:10.1021/ma0600052

45. Kutsumizu, S., K. Tadano, Y. Matsuda, M. Goto, H. Tachino, H. Hara, E. Hirasawa, H. Tagawa, Y. Muroga, and S. Yano, "Investigation of microphase separation and thermal properties of noncrystalline ethylene ionomers. 2. IR, DSC and dielectric characterization," Macromolecules, Vol. 33, No. 24, 9044-9053, 2000.
doi:10.1021/ma0004256

46. Ray, S., A. J. Easteal, R. P. Cooney, and N. R. Edmonds, "Structure and properties of melt-processed PVDF/PMMA/polyaniline blends," Mat. Chem. Phy., Vol. 113, 829-838, 2009.
doi:10.1016/j.matchemphys.2008.08.034

47. Kulkarni, M. V. and B. B. Kale, "Development of optical pH sensor using conducting polyaniline-wrapped multiwalled carbon nanotubes (PANI-MWCNTs) nanocomposite," IMCS 2012 - The 14th International Meeting on Chemical Sensors, 2012, DOI 10.5162/IMCS2012/P1.3.2.

48. Khalid, M., M. A. Tumelero, I. S. Brandt, V. C. Zoldan, J. J. S. Acuna, and A. A. Pasa, "Electrical conductivity studies of polyaniline nanotubes doped with different sulfonic acids," Indian J. Mat. Sci., Article ID 718304, 2013, doi.org/10.1155/2013/718304.

49. Yılmaz, F. and Z. Kuqukyavuz, "Conducting polymer composites of multiwalled carbon nanotube filled doped polyaniline," J. Appl. Polym. Sci., Vol. 111, 680-684, 2009.

50. Zhang, J.-Q., C.-M. Shi, T.-Z. Ji, G.-L. Wu, and K.-C. Kou, "Preparation and microwave absorbing characteristics of multi-walled carbon nanotube/chiral-polyaniline composites," Open J. Polym. Chem., Vol. 4, 62-72, 2014.
doi:10.4236/ojpchem.2014.43008

51. Pazhanisamy, P. and B. S. R. Reddy, "Synthesis and characterization of methacrylamidopropy-ltrimethylammonium chloride and N-substituted acrylamide ionomers," Express Polym Letters, Vol. 1, No. 11, 740-747, 2007.
doi:10.3144/expresspolymlett.2007.102

52. Li, D. and G. S. Sur, "Comparison of poly(ethylene-co-acrylic acid) loaded Zn2+-montmorillonite nanocomposites and poly(ethylene-co-acrylic acid) zinc salt," J. Ind. Eng. Chem., Vol. 20, No. 5, 3122-3127, 2014.
doi:10.1016/j.jiec.2013.11.054

53. Kutsumizu, S., Y. Hashimoto, H. Hara, H. Tachino, E. Hirasawa, and S. Yano, "DC conduction properties of a model ethylene-methacrylic acid ionomer," Macromol, Vol. 27, No. 7, 1781-1787, 1994.
doi:10.1021/ma00085a017

54. Das, N. C., S. Yamazaki, M. Hikosaka, T. K. Chaki, D. Khastgir, and A. Chakraborty, "Electrical conductivity and electromagnetic interference shielding effectiveness of polyaniline ethylene vinyl acetate composites," Polym. Int., Vol. 54, 256-259, 2005.
doi:10.1002/pi.1660

55. Chutia, P. and A. Kumar, "Electrical, optical and dielectric properties of HCl doped polyaniline nanorods," Physica B, Vol. 436, 200-207, 2014.
doi:10.1016/j.physb.2013.12.015

56. Zilberman, M., A. Siegmann, and M. Narkis, "Conductivity and structure of melt-processed polyaniline binary and ternary blends," Polym. Adv. Technol., Vol. 11, 20-26, 2000.
doi:10.1002/(SICI)1099-1581(200001)11:1<20::AID-PAT933>3.0.CO;2-7

57. Terlemezyan, L., M. Mihailov, and B. Ivanova, "Electrically conductive polymer blends comprising polyaniline," Polym. Bull., Vol. 29, 283-287, 1992.
doi:10.1007/BF00944820

58. Wang, Y., "Microwave absorbing materials based on polyaniline composites: A review," Int. J. Mat. Res., Vol. 105, No. 1, 3-12, 2014.
doi:10.3139/146.110996

59. Thomassin, J. M., C. Jerome, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, "Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials," Mat. Sci. Eng. Reports, Vol. 74, No. 7, 211-232, 2013.
doi:10.1016/j.mser.2013.06.001

60. John, H., R. M. Thomas, J. Jacob, K. T. Mathew, and R. Joseph, "Conducting polyaniline composites as microwave absorbers," Polym. Comp., Vol. 28, No. 5, 588-582, 2007.
doi:10.1002/pc.20268

61. Schmitza, D. P., L. G. Ecco, S. Dulb, E. C. L. Pereirac, B. G. Soares, G. M. O. Barraa, and A. Pegoretti, "Electromagnetic interference shielding effectiveness of ABS carbon-based composites manufactured via fused deposition modelling," Mater. Today Commun., Vol. 15, 70-80, 2018.
doi:10.1016/j.mtcomm.2018.02.034