Vol. 88
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-11-30
Sodium Salt of Polyethylene-Co-Methacrylic Acid Ionomer/Polyaniline Binary Blends for EMI Shielding Applications
By
Progress In Electromagnetics Research C, Vol. 88, 207-218, 2018
Abstract
Improvement of properties of polymeric materials through blending is a way to obtain products with highly adapted performance for specific applications. The present work reports the design and preparation of binary blend films of poly (ethylene-co-methacrylic acid) neutralized using sodium salt (EMAANa) and nano polyaniline doped with hydrochloric acid (nano PANI-HCl) or toluene sulfonic acid (nano PANI-TSA) with the aim of achieving improved thermal stability, DC conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of EMAANa. The binary blends were prepared by solution blending using a solvent mixture of toluene/1-butanol (90:10) at 65 °C. The hybrid materials were characterized and evaluated by FTIR, UV-Vis spectroscopy, XRD spectroscopy and thermogravimetric analysis (TGA). The electrical conductivity of the PANI and PANI/EMAANa blends was measured by four-probe method. The EMI shielding effectiveness was studied using a wave-guide coupled to an Agilent Synthesized Sweeper 8375A and a Hewlett-Packard spectrum analyzer 7000 in the X band frequency range (8-12 GHz). FTIR indicates a π-π and hydrogen bonding interaction between PANI and EMAANa, enabling the PANI to be adsorbed in the ionomer. The TGA of the blends show similar weight loss pattern with nano PANI-TSA-EMAANa exhibiting slightly lower weight loss below the decomposition temperature. The TGA results show that thermal stability of the blends is better compared to pure EMAANa. The results of measurements of electrical conductivity and EMI SE demonstrates that PANI was successfully blended into the EMAANa substrate.
Citation
Kingsley Kema Ajekwene, Jelmy Elavathingal Johny, and Thomas Kurian, "Sodium Salt of Polyethylene-Co-Methacrylic Acid Ionomer/Polyaniline Binary Blends for EMI Shielding Applications," Progress In Electromagnetics Research C, Vol. 88, 207-218, 2018.
doi:10.2528/PIERC18093003
References

1. Hirasawa, E., Y. Yamamoto, K. Tadano, and S. Yano, "Effect of metal cation type on the structure and properties of ethylene lonomers," J. Appl. Polym. Sci., Vol. 42, 351-362, 1991.
doi:10.1002/app.1991.070420207        Google Scholar

2. Mathias, L. J., , Learning Center/ionomer, Accessed June 2, 2018, Available: www.pslc.ws/macrog/Polymer Science.        Google Scholar

3. Nandi, A., D. G. Gupta, and A. K. Banthia, "Sulfonated polybutadiene random ionomer as stabilizer for colloidal copper nanoparticles," Colloids Surf. A: Physicochem Eng. Aspects, Vol. 197, 119-124, 2002.
doi:10.1016/S0927-7757(01)00853-6        Google Scholar

4. Capek, I., "Nature and properties of ionomer assemblies II," Adv. in Colloid Interface Sci., Vol. 118, 73-112, 2005.
doi:10.1016/j.cis.2005.06.005        Google Scholar

5. Chodak, I. and I. Krupa, "Percolation effect and mechanical behavior of carbon black filled polyethylene," J. Mat. Sci. Letters, Vol. 18, 1457-1459, 1991.
doi:10.1023/A:1006665527806        Google Scholar

6. Castillo-Ortega, M. M., J. C. Encinas, D. E. Rodriguez, and R. Olayo, "Preparation and characterization of electroconductive polypyrrole-thermoplastic composites," J. Appl. Polym. Sci., Vol. 81, No. 6, 1498-1506, 2001.
doi:10.1002/app.1578        Google Scholar

7. Carinhana, Jr, D., R. Faez, A. F. Nogueira, and M.-A. De Paoli, "Photoelectrochemical properties of PANI-DBSA/EPDM blends," Synth. Met., Vol. 121, 1569-1570, 2001.
doi:10.1016/S0379-6779(00)01290-X        Google Scholar

8. Koul, S., R. Chandra, and S. K. Dhawan, "Conducting polyaniline composite: A reusable sensor material for aqueous ammonia," Sens. Actuat. B, Vol. 75, 151-9, 2001.
doi:10.1016/S0925-4005(00)00685-7        Google Scholar

9. Gao, J., J.-M. Sansinena, and H.-L. Wang, "Chemical vapor driven polyaniline sensor/actuators," Synth. Met., Vol. 135-136, 809-810, 2003.
doi:10.1016/S0379-6779(02)00883-4        Google Scholar

10. Gerard, M., A. Chaubey, and B. D. Malhotra, "Application of conducting polymers to biosensors," Biosensors & Bioelectronics, Vol. 17, No. 5, 345-349, 2002.
doi:10.1016/S0956-5663(01)00312-8        Google Scholar

11. Falcao, E. H. L. and W. M. De Azevedo, "Polyaniline-poly(vinyl alcohol) composite as an optical recording material," Synth. Met., Vol. 128, 149-154, 2002.
doi:10.1016/S0379-6779(01)00659-2        Google Scholar

12. Faez, R., I. M. Martin, M.-A. De Paoliand, and M. C. Rezende, "Microwave properties of EPDM/PANI-DBSA blends," Synth. Met., Vol. 119, 435-6, 2001.
doi:10.1016/S0379-6779(00)01283-2        Google Scholar

13. Castillo-Ortega, M. M., T. Del Castillo-Castro, J. C. Encinas, M. Perez-Tello, A. De Paoli Marco, and R. Olayo, "Electrically conducting polyaniline-PBMA composite films obtained by extrusion," J. Appl. Polym. Sci., Vol. 89, 179-183, 2003.
doi:10.1002/app.12176        Google Scholar

14. Joseph, N., J. Varghese, and M. T. Sebastian, "Self assembled polyaniline nanofibers with enhanced electromagnetic shielding properties," RSC Adv., Vol. 5, 20459-20466, 2015.
doi:10.1039/C5RA02113H        Google Scholar

15. Gairola, S. P., M. Verma, L. Kumar, M. A. Dar, M. Annapoorni, and R. K. Kotnala, "Enhanced microwave absorption properties in polyaniline and nano-ferrite composite in X-band," Synth. Met., Vol. 160, No. 21-22, 2315-2318, 2010.
doi:10.1016/j.synthmet.2010.08.025        Google Scholar

16. Dar, M. A., R. K. Kotnala, V. Verma, J. Shah, W. A. Siddiqui, and M. Alam, "High magneto-crystalline anisotropic core-shell structured MnO.5ZnO.5Fe2O4/polyaniline nanocomposites prepared by in situ emulsion polymerization," J. Phys. Chem. C, Vol. 116, 5277-5287, 2012.
doi:10.1021/jp205652d        Google Scholar

17. Joseph, N., J. Varghese, and M. T. Sebastian, "A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks," J. Mater. Chem. C, Vol. 4, 999-1008, 2016.
doi:10.1039/C5TC03080C        Google Scholar

18. Su, S.-J. and N. Kuramoto, "Synthesis of processable polyaniline complexed with anionic surfactant and its conducting blends in aqueous and organic system," Synth. Met., Vol. 108, No. 2, 121-126, 2000.
doi:10.1016/S0379-6779(99)00185-X        Google Scholar

19. Barbero, C., H. J. Salavagione, D. F. Acevedo, D. E. Grummelli, F. Garay, G. A. Planes, G. M. Morales, and M. C. Miras, "Novel synthetic methods to produce functionalized conducting polymers I. Polyanilines," Electrochimica Acta, Vol. 49, No. 22-23, 3671-3686, 2004.
doi:10.1016/j.electacta.2003.11.035        Google Scholar

20. Yang, J. P., R. J. Planes, A. Pron, and M. Nechtschein, "Preparation of low density polyethylene-based polyaniline conducting polymer composites with low percolation threshold via extrusion," Synth. Met., Vol. 93, 169-173, 1998.
doi:10.1016/S0379-6779(97)04093-9        Google Scholar

21. Castillo-Ortega, M. M., D. E. Rodriguez, J. C. Encinas, M. Plascencia, F. A. Mendez-Velarde, and R. Olayo, "Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly(n-butyl methacrylate) composites," Sens. Actuat. B, Vol. 85, 19-25, 2002.
doi:10.1016/S0925-4005(02)00045-X        Google Scholar

22. Wang, Y., H.-Q. Xie, Y. Cai, and J. Guo, "Synthesis and properties of polyaniline/sodium and zinc ionomer composites," Polym. J., Vol. 29, No. 11, 875-880, 1997.
doi:10.1295/polymj.29.875        Google Scholar

23. Xie, H.-Q., Q.-L. Pu, and D. Xie, "Preparation of conductive polyaniline-sulfonated EPDM ionomer composites from in situ emulsion polymerization and study of their properties," J. Appl. Polym. Sci., Vol. 93, 2211-2217, 2004.
doi:10.1002/app.20737        Google Scholar

24. Morgan, H., P. J. S. Foot, and N. W. Brooks, "The effects of composition and processing variables on the properties of thermoplastic polyaniline blends and composites," J. Mat. Sci., Vol. 36, No. 22, 5369-5377, 2001.
doi:10.1023/A:1012480120667        Google Scholar

25. Mathew, H., V. S. Punnackal, S. Kuriakose, B. S. Kumari, and A. Manuel, "Synthesis and electrical characterization of polyaniline-multiwalled carbon nanotube composites with different dopants," Int. J. Sci. Res. Pub., Vol. 3, No. 8, 1-10, 2013.        Google Scholar

26. Kumar, A., V. Kumar, M. Kumar, and K. Awasthi, "Synthesis and characterization of hybrid PANI/MWCNT nanocomposites for EMI applications," Polymer Composites, 2017, doi 10.1002/pc.24418.        Google Scholar

27. Abdullah, E. T., R. S. Ahmed, S. M. Hassan, and A. N. Naje, "Synthesis and characterization of PANI and polyaniline/multi walled carbon nanotube composite," Int. J. Application or Innovation Eng. Mgt., Vol. 4, No. 9, 130-134, 2015.        Google Scholar

28. Ratheesh, R. and K. Viswanathan, "Chemical polymerization of aniline using para-toluene sulphonic acid," IOSR J. Appl. Phy., Vol. 6, No. 1, 1-9, 2014.
doi:10.9790/4861-06120109        Google Scholar

29. Rafeeq, S. N. and W. Z. Khalaf, "Preparation, characterization and electrical conductivity of doped polyaniline with (HCL and P-TSA)," The 5th International Scientific Conference for Nanotechnology and Advanced Materials and Their Applications ICNAMA, 3-4, 2015.        Google Scholar

30. Chakraborty, G., K. Gupta, D. Rana, and A. K. Meikap, "Effect of multiwalled carbon nanotubes on electrical conductivity and magnetoconductivity of polyaniline," Adv. Nat. Sci.: Nanosci. Nanotechnol., Vol. 3, 1-8, 2012.        Google Scholar

31. Babu, V. J., S. Vempati, and S. Ramakrishna, "Conducting polyaniline-electrical charge transportation," Mat. Sci. Applications, Vol. 4, 1-10, 2013.        Google Scholar

32. Bachhav, S. G. and D. R. Patil, "Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites and its electrical percolation behavior," Amer. J. Mat. Sci., Vol. 5, No. 4, 90-95, 2015.        Google Scholar

33. Painter, P. C., B. A. Brozoski, and M. M. Coleman, "FTIR studies of calcium and sodium ionomers derived from an ethylene-methacrylic acid and copolymer," J. Polym. Sci.: Polym. Phy., Vol. 20, No. 6, 1069-1080, 1982.
doi:10.1002/pol.1982.180200614        Google Scholar

34. Kutsumizu, S., H. Hara, H. Tachino, K. Shimabayashi, and S. Yano, "Infrared spectroscopic study of the binary blends of sodium and zinc salt ionomers produced from poly(ethylene-co-methacrylic acid)," Macromolecules, Vol. 32, No. 19, 6340-6347, 1999.
doi:10.1021/ma9905728        Google Scholar

35. Reynolds, P. J. and A. Surlyn®, "Ionomer as a self-healing and self-sensing composite,", MRes Thesis, Department of Metallurgy and Materials, University of Birmingham, UK, 2012.        Google Scholar

36. Ramos, J. M., M. T. de M Cruz, A. C. Costa, Jr., O. Versiane, and C. A. T. Soto, "Fourier transform infrared spectrum: Vibrational assignments using density functional theory and natural bond orbital analysis of the bis (guanido acetate) nickel (II) complex," Science Asia, Vol. 37, 247-255, 2011.
doi:10.2306/scienceasia1513-1874.2011.37.247        Google Scholar

37. Abdullah, E. T., S. M. Hassan, and R. S. Ahmed, "Electrical properties of polyani-line/functionalized multi walled carbon nanotubes nanocomposite," Int. J. Current Eng. Technol., Vol. 6, No. 2, 617-621, 2016.        Google Scholar

38. Wu, T.-M. and Y.-W. Lin, "Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties," Polym., Vol. 47, 3576-3582, 2006.
doi:10.1016/j.polymer.2006.03.060        Google Scholar

39. Gajendran, P. and R. Saraswathi, "Polyaniline-carbon nanotube composites," Pure Appl. Chem., Vol. 80, No. 11, 2377-2395, 2008.
doi:10.1351/pac200880112377        Google Scholar

40. Kutsumizu, S., H. Hara, H. Tachino, K. Shimabayashi, and S. Yano, "Infrared spectroscopic study of the binary blends of sodium and zinc salt ionomers produced from poly(ethylene-co-methacrylic acid)," Macromolecules, Vol. 32, 6340-6347, 1999.
doi:10.1021/ma9905728        Google Scholar

41. Pineri, M. and A. Eisenberg, "Structure and properties of ionomers," Nato Science Series C, Mathematical and Physical Sciences D, Vol. 198, Reidel Dordrecht, Netherlands, 1987.        Google Scholar

42. Schlick, S., Ionomers: Characterization, Theory and Applications, Taylor and Francis, CRC Press, 1996.

43. Gazotti, Jr., W. A., G. Casalbore-Miceli, S. Mitzakoff, A. Geri, M. C. Gallazzi, and M.-A. De Paoli, "Conductive polymer blends as electrochromic materials," Electrochimica Acta, Vol. 44, 1965-1971, 1999.
doi:10.1016/S0013-4686(98)00305-3        Google Scholar

44. Shah, R. K. and D. R. Paul, "Comparison of nanocomposites prepared from sodium, zinc and lithium ionomers of ethylene/methacrylic acid copolymers," Macromolecules, Vol. 39, No. 9, 3327-3336, 2006.
doi:10.1021/ma0600052        Google Scholar

45. Kutsumizu, S., K. Tadano, Y. Matsuda, M. Goto, H. Tachino, H. Hara, E. Hirasawa, H. Tagawa, Y. Muroga, and S. Yano, "Investigation of microphase separation and thermal properties of noncrystalline ethylene ionomers. 2. IR, DSC and dielectric characterization," Macromolecules, Vol. 33, No. 24, 9044-9053, 2000.
doi:10.1021/ma0004256        Google Scholar

46. Ray, S., A. J. Easteal, R. P. Cooney, and N. R. Edmonds, "Structure and properties of melt-processed PVDF/PMMA/polyaniline blends," Mat. Chem. Phy., Vol. 113, 829-838, 2009.
doi:10.1016/j.matchemphys.2008.08.034        Google Scholar

47. Kulkarni, M. V. and B. B. Kale, "Development of optical pH sensor using conducting polyaniline-wrapped multiwalled carbon nanotubes (PANI-MWCNTs) nanocomposite," IMCS 2012 - The 14th International Meeting on Chemical Sensors, 2012, DOI 10.5162/IMCS2012/P1.3.2.        Google Scholar

48. Khalid, M., M. A. Tumelero, I. S. Brandt, V. C. Zoldan, J. J. S. Acuna, and A. A. Pasa, "Electrical conductivity studies of polyaniline nanotubes doped with different sulfonic acids," Indian J. Mat. Sci., Article ID 718304, 2013, doi.org/10.1155/2013/718304.        Google Scholar

49. Yılmaz, F. and Z. Kuqukyavuz, "Conducting polymer composites of multiwalled carbon nanotube filled doped polyaniline," J. Appl. Polym. Sci., Vol. 111, 680-684, 2009.        Google Scholar

50. Zhang, J.-Q., C.-M. Shi, T.-Z. Ji, G.-L. Wu, and K.-C. Kou, "Preparation and microwave absorbing characteristics of multi-walled carbon nanotube/chiral-polyaniline composites," Open J. Polym. Chem., Vol. 4, 62-72, 2014.
doi:10.4236/ojpchem.2014.43008        Google Scholar

51. Pazhanisamy, P. and B. S. R. Reddy, "Synthesis and characterization of methacrylamidopropy-ltrimethylammonium chloride and N-substituted acrylamide ionomers," Express Polym Letters, Vol. 1, No. 11, 740-747, 2007.
doi:10.3144/expresspolymlett.2007.102        Google Scholar

52. Li, D. and G. S. Sur, "Comparison of poly(ethylene-co-acrylic acid) loaded Zn2+-montmorillonite nanocomposites and poly(ethylene-co-acrylic acid) zinc salt," J. Ind. Eng. Chem., Vol. 20, No. 5, 3122-3127, 2014.
doi:10.1016/j.jiec.2013.11.054        Google Scholar

53. Kutsumizu, S., Y. Hashimoto, H. Hara, H. Tachino, E. Hirasawa, and S. Yano, "DC conduction properties of a model ethylene-methacrylic acid ionomer," Macromol, Vol. 27, No. 7, 1781-1787, 1994.
doi:10.1021/ma00085a017        Google Scholar

54. Das, N. C., S. Yamazaki, M. Hikosaka, T. K. Chaki, D. Khastgir, and A. Chakraborty, "Electrical conductivity and electromagnetic interference shielding effectiveness of polyaniline ethylene vinyl acetate composites," Polym. Int., Vol. 54, 256-259, 2005.
doi:10.1002/pi.1660        Google Scholar

55. Chutia, P. and A. Kumar, "Electrical, optical and dielectric properties of HCl doped polyaniline nanorods," Physica B, Vol. 436, 200-207, 2014.
doi:10.1016/j.physb.2013.12.015        Google Scholar

56. Zilberman, M., A. Siegmann, and M. Narkis, "Conductivity and structure of melt-processed polyaniline binary and ternary blends," Polym. Adv. Technol., Vol. 11, 20-26, 2000.
doi:10.1002/(SICI)1099-1581(200001)11:1<20::AID-PAT933>3.0.CO;2-7        Google Scholar

57. Terlemezyan, L., M. Mihailov, and B. Ivanova, "Electrically conductive polymer blends comprising polyaniline," Polym. Bull., Vol. 29, 283-287, 1992.
doi:10.1007/BF00944820        Google Scholar

58. Wang, Y., "Microwave absorbing materials based on polyaniline composites: A review," Int. J. Mat. Res., Vol. 105, No. 1, 3-12, 2014.
doi:10.3139/146.110996        Google Scholar

59. Thomassin, J. M., C. Jerome, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, "Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials," Mat. Sci. Eng. Reports, Vol. 74, No. 7, 211-232, 2013.
doi:10.1016/j.mser.2013.06.001        Google Scholar

60. John, H., R. M. Thomas, J. Jacob, K. T. Mathew, and R. Joseph, "Conducting polyaniline composites as microwave absorbers," Polym. Comp., Vol. 28, No. 5, 588-582, 2007.
doi:10.1002/pc.20268        Google Scholar

61. Schmitza, D. P., L. G. Ecco, S. Dulb, E. C. L. Pereirac, B. G. Soares, G. M. O. Barraa, and A. Pegoretti, "Electromagnetic interference shielding effectiveness of ABS carbon-based composites manufactured via fused deposition modelling," Mater. Today Commun., Vol. 15, 70-80, 2018.
doi:10.1016/j.mtcomm.2018.02.034        Google Scholar