Vol. 77
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-05
A Shape-First, Feed-Next Design Approach for Compact Planar MIMO Antennas
By
Progress In Electromagnetics Research M, Vol. 77, 157-165, 2019
Abstract
Employing characteristic mode theory (CMT), a shape-first feed-next design methodology for compact planar antennas is proposed, which facilitates rapid and systematic design of self-matched, multi-port antennas with optimal bandwidth and high isolation. First, the optimal antenna shape with multiple self-resonant modes is synthesized using a binary genetic algorithm. Then, the optimal feed positions that provide good input matching and high isolation between the excitation ports are specified using a virtual probe modeling technique. A two-port microstrip antenna with an electrical size of 0.45λd×0.297λd is designed, fabricated and measured. The measured operating frequency is within 2% of the full wave simulation, and the overall S parameter characteristics and far field patterns agree well with the simulation result, validating our design methodology. Mutual coupling S21 < -30 dB at the center frequency is achieved in this design.
Citation
Binbin Yang, Juncheng Zhou, and Jacob J. Adams, "A Shape-First, Feed-Next Design Approach for Compact Planar MIMO Antennas," Progress In Electromagnetics Research M, Vol. 77, 157-165, 2019.
doi:10.2528/PIERM18100903
References

1. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, Vol. 6, No. 3, 311-335, 1998.
doi:10.1023/A:1008889222784        Google Scholar

2. Liu, L., S. Cheung, and T. Yuk, "Compact MIMO antenna for portable devices in UWB applications," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4257-4264, 2013.
doi:10.1109/TAP.2013.2263277        Google Scholar

3. Ren, J., W. Hu, Y. Yin, and R. Fan, "Compact printed MIMO antenna for UWB applications," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1517-1520, 2014.        Google Scholar

4. Soltani, S. and R. D. Murch, "A compact planar printed mimo antenna design," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 1140-1149, 2015.
doi:10.1109/TAP.2015.2389242        Google Scholar

5. Sarrazin, J., Y. Mahe, S. Avrillon, and S. Toutain, "Collocated microstrip antennas for MIMO systems with a low mutual coupling using mode confinement," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 589-592, Feb. 2010.
doi:10.1109/TAP.2009.2037690        Google Scholar

6. Soltani, S., P. Lotfi, and R. D. Murch, "A dual-band multiport MIMO slot antenna for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 529-532, 2017.
doi:10.1109/LAWP.2016.2587732        Google Scholar

7. Redondo, C. and L. de Haro, "On the analysis and design of reconfigurable multimode MIMO microstrip antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 119-129, 2014.
doi:10.1109/TAP.2013.2288975        Google Scholar

8. Li, H., Z. T. Miers, and B. K. Lau, "Design of orthogonal MIMO handset antennas based on characteristic mode manipulation at frequency bands below 1 GHz," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2756-2766, May 2014.
doi:10.1109/TAP.2014.2308530        Google Scholar

9. Martens, R. and D. Manteuffel, "Systematic design method of a mobile multiple antenna system using the theory of characteristic modes," IET Microwaves, Antennas & Propagation, Vol. 8, No. 12, 887-893, 2014.
doi:10.1049/iet-map.2013.0534        Google Scholar

10. Deng, C., Z. Feng, and S. V. Hum, "MIMO mobile handset antenna merging characteristic modes for increased bandwidth," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 2660-2667, Jul. 2016.
doi:10.1109/TAP.2016.2537358        Google Scholar

11. Zhang, Q., R. Ma, W. Su, and Y. Gao, "Design of a multimode UWB antenna using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 66, No. 7, 3712-3717, Jul. 2018.
doi:10.1109/TAP.2018.2835370        Google Scholar

12. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Trans. Antennas Propag., Vol. 19, No. 5, 622-628, 1971.
doi:10.1109/TAP.1971.1139999        Google Scholar

13. Yang, B. and J. J. Adams, "Systematic shape optimization of symmetric MIMO antennas using characteristic modes," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 2668-2678, 2016.
doi:10.1109/TAP.2015.2473703        Google Scholar

14. Yang, B. and J. J. Adams, "A modal approach to shape synthesis and feed placement for planar MIMO antennas," Proc. 2016 IEEE Int. Symp. Antennas and Propagation, 15-16, 2016.
doi:10.1109/APS.2016.7695716        Google Scholar

15. Chow, Y. L., J. Yang, D. Fang, and G. Howard, "A closed-form spatial Green’s function for the thick microstrip substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 3, 588-592, 1991.
doi:10.1109/22.75309        Google Scholar

16. Capek, M., J. Eichler, and P. Hazdra, "Evaluating radiation efficiency from characteristic currents," IET Microwaves, Antennas & Propagation, Vol. 9, No. 1, 10-15, 2014.
doi:10.1049/iet-map.2013.0473        Google Scholar

17. Yang, B. and J. J. Adams, "Computing and visualizing the input parameters of arbitrary planar antennas via eigenfunctions," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 2707-2718, Jul. 2016.
doi:10.1109/TAP.2016.2554604        Google Scholar

18. Ethier, J. L. and D. A. McNamara, "Antenna shape synthesis without prior specification of the feedpoint locations," IEEE Trans. Antennas Propag., Vol. 62, No. 10, 4919-4934, 2014.
doi:10.1109/TAP.2014.2344107        Google Scholar

19. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Lett., Vol. 39, No. 9, 705-707, 2003.
doi:10.1049/el:20030495        Google Scholar

20. Soltani, S., P. Lotfi, and R. D. Murch, "Design and optimization of multiport pixel antennas," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2049-2054, Apr. 2018.
doi:10.1109/TAP.2018.2800759        Google Scholar

21. Lu, D., L.Wang, E. Yang, and G.Wang, "Design of high-isolation wideband dual-polarized compact MIMO antennas with multiobjective optimization," IEEE Trans. Antennas Propag., Vol. 66, No. 3, 1522-1527, Mar. 2018.
doi:10.1109/TAP.2017.2784446        Google Scholar

22. Mallahzadeh, A. R., S. Es’haghi, and A. Alipour, "Design of an E-shaped MIMO antenna using iwo algorithm for wireless application at 5.8 GHz," Progress In Electromagnetics Research, Vol. 90, 187-203, 2009.
doi:10.2528/PIER08122704        Google Scholar