1. Lin, I.-H., M. D. Vincentis, C. Caloz, et al. "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1142-1149, 2004.
doi:10.1109/TMTT.2004.825747 Google Scholar
2. Chang, L. and T.-G. Ma, "Dual-mode branch-line/rat-race coupler using composite right-/left-handed lines," IEEE Microw. Wireless Comp. Lett., Vol. 27, No. 5, 449-451, 2017.
doi:10.1109/LMWC.2017.2690851 Google Scholar
3. Bonache, J., G. Sisó, M. Gil, et al. "Application of composite right/left handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual-band microwave components," IEEE Microw. Wireless Comp. Lett., Vol. 18, No. 8, 524-526, 2008.
doi:10.1109/LMWC.2008.2001011 Google Scholar
4. Durán-Sindreu, M., G. Sisó, J. Bonache, et al. "Planar multi-band microwave components based on the generalized composite right/left handed transmission line concept," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, 3882-3891, 2010. Google Scholar
5. Selga, J., A. Rodríguez, V. E. Boria, et al. "Synthesis of split-rings-based artificial transmission lines through a new two-step, fast converging, and robust aggressive space mapping (ASM) algorithm," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 6, 2295-2308, 2013.
doi:10.1109/TMTT.2013.2259254 Google Scholar
6. Caloz, C., "Metamaterial dispersion engineering concepts and applications," Proc. IEEE, Vol. 99, No. 10, 1711-1719, 2011.
doi:10.1109/JPROC.2011.2114631 Google Scholar
7. Cao, W.-Q., B. Zhang, A. Liu, T. Yu, D. Guo, and Y. Wei, "Novel phase-shifting characteristic of CRLH TL and its application in the design of dual-band dual-mode dual-polarization antenna," Progress In Electromagnetics Research, Vol. 131, 375-390, 2012.
doi:10.2528/PIER12081007 Google Scholar
8. Wu, G.-C., G. Wang, L.-Z. Hu, Y.-W. Wang, and C. Liu, "A miniaturized triple-band branch-line coupler based on simplified dual-composite right/left-handed transmission line," Progress In Electromagnetics Research C, Vol. 39, 1-10, 2013. Google Scholar
9. Cheng, K.-K. and S. Wong, "A novel dual-band 3-dB branch-line coupler design with controllable bandwidths," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 10, 3055-3061, 2012.
doi:10.1109/TMTT.2012.2210437 Google Scholar
10. Page, J. E. and J. Esteban, "Dual-band matching properties of the C-section all-pass network," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 2, 827-832, 2013.
doi:10.1109/TMTT.2012.2231876 Google Scholar
11. Bai, Y.-F., X.-H. Wang, C.-J. Gao, et al. "Design of compact quad-frequency impedance transformer using two-section coupled line," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2417-2423, 2012.
doi:10.1109/TMTT.2012.2202682 Google Scholar
12. Li, X., M. Helaoui, F. Ghannouchi, et al. "A quad-band Doherty power amplifier based on T-section coupled lines," IEEE Microw. Wireless Comp. Lett., Vol. 26, No. 6, 437-439, 2016.
doi:10.1109/LMWC.2016.2559501 Google Scholar
13. Arigong, B., J. Shao, M. Zhou, H. Ren, J. Ding, Q. Mu, Y. Li, S. Fu, H. Kim, and H. Zhang, "An improved design of dual-band 3 dB 180° directional coupler," Progress In Electromagnetics Research C, Vol. 56, 153-162, 2015.
doi:10.2528/PIERC15011204 Google Scholar
14. Koziel, S., J. W. Bandler, and K. Madsen, "A space-mapping framework for engineering optimization - Theory and implementation," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3721-3730, 2006.
doi:10.1109/TMTT.2006.882894 Google Scholar
15. Hsu, C.-L., J.-T. Kuo, and C.-W. Chang, "Miniaturized dual-band hybrid couplers with arbitrary power division ratios," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 1, 149-156, 2009.
doi:10.1109/TMTT.2008.2009036 Google Scholar
16. The Mathworks Inc. MATLAB Optimization Toolbox User’s Guide, Version R2016b, Natick, 2015.
17. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2012.
18. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, 2001.
doi:10.1002/0471221619
19. The ANSYS Inc. ANSYS Electronics Desktop Online Help, Version 16.0.0, Pittsburgh, 2015.
20. Nosrati, M. and M. Daneshmand, "Substrate integrated waveguide L-shaped iris for realization of transmission zero and evanescent-mode pole," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 7, 2310-2320, 2017.
doi:10.1109/TMTT.2017.2679011 Google Scholar