1. Xu, X. W., B. Huo, and M. He, "Exact modeling for the influence of the von karman radome on antennas," Transactions of Beijing Institute of Technology, 532-535, Beijing, China, 2006. Google Scholar
2. Zhao, W. J. and L. W. Li, "Efficient analysis of antenna radiation in the presence of airborne dielectric radomes of arbitrary shape," IEEE Transaction on Antennas and Propagation, Vol. 53, 32-35, 2005. Google Scholar
3. Ma, Y., "Characteristic analysis of several wire antennas attached to an arbitrary faceted conducting body,", University of Electronic Science and Technology, Chengdu, China, 2002. Google Scholar
4. Harrington, R. F., Field Computation by Moment Methods, 5-90, IEEE Press, 1993.
doi:10.1109/9780470544631
5. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transaction on Antennas and Propagation, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
6. Ji, Z., T. K. Sarkar, B. H. Jung, Y. S. Chung, M. S. Palma, and M. Yuan, "A stable solution of time domain electric field integral equation for thin-wire antennas using the laguerre polynomials," IEEE Transactions on Antennas and Propagation, Vol. 52, 2641-2649, 2004.
doi:10.1109/TAP.2004.834437 Google Scholar
7. Wagner, R. L. and W. C. Chew, "Study of wavelets for the solution of electromagnetic integral equations," IEEE Transactions on Antennas and Propagation, 802-810, 1995.
doi:10.1109/8.402199 Google Scholar
8. Baharav, Z. and Y. Leviatan, "Impedance matrix compression (IMC) using iteratively selected wavelet basis for MFIE formulations," Microwave and Optical Technology Letters, 145-150, 1996.
doi:10.1002/(SICI)1098-2760(19960620)12:3<145::AID-MOP7>3.0.CO;2-H Google Scholar
9. Baharav, Z. and Y. Leviatan, "Impedance matrix compression (IMC) using iteratively selected wavelet basis," IEEE Transactions on Antennas and Propagation, 226-233, 1998.
doi:10.1109/8.660967 Google Scholar
10. Wang, Z., "The application of compressive sensing theory in computational electromagnetics,", University of Electronic Science and Technology of China, Chengdu, China, 2015. Google Scholar
11. Donoho, D. L., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
12. Candès, E., "Compressive sampling," European Mathematical Society. Proceedings of the International Congress of Mathematicians, 1433-1450, American Mathematical Society, Madrid, 2006. Google Scholar
13. Chen, M. S., "Compressed sensing and its application in analysis of electromagnetic scattering problems,", Post-doctoral report of the University of Science and Technology of China, 2011. Google Scholar
14. Cao, X. Y., M. S. Chen, and X. L.Wu, "Sparse transform matrices and its application in calculation of electromagnetic scattering problems," Chinese Physics Letters, Vol. 2, 1-4, 2013. Google Scholar
15. Gui, G., A. Mehbodniya, Q. Wan, and F. Adachi, "Sparse signal recovery with OMP algorithm using sensing measurement matrix," IEICE Electronics Express, Vol. 8, No. 5, 285-290, 2011.
doi:10.1587/elex.8.285 Google Scholar
16. Kong, M., M. S. Chen, B. Wu, and X. L. Wu, "Fast and stabilized algorithm for analyzing electromagnetic scattering problems of bodies of revolution by compressive sensing," IEEE Antennas Wireless Propag. Lett., Vol. 16, 198-201, 2017.
doi:10.1109/LAWP.2016.2569605 Google Scholar