1. Hanson, G. W., "Dyadic Green's functions for an anisotropic, non-local model of biased graphene," IEEE Transactions on Antennas and Propagation, Vol. 103, 747-757, 2008.
doi:10.1109/TAP.2008.917005 Google Scholar
2. Lovat, G., "Equivalent circuit for electromagnetic interaction and transmission through graphene sheets," IEEE Transactions on Electromagnetic, Vol. 54, 101-109, 2012.
doi:10.1109/TEMC.2011.2169072 Google Scholar
3. Tamagnone, M., A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, "Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices," Nature Photonics, 556-563, 2014.
doi:10.1038/nphoton.2014.109 Google Scholar
4. Feizi, M., V. Nayyeri, and O. M. Ramahi, "Modeling magnetized graphene in thefinite-difference time-domain method using an anisotropic surface boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 66, 233-241, 2018.
doi:10.1109/TAP.2017.2768081 Google Scholar
5. Amanatiadis, S. A., N. V. Kantartzis, T. Ohtani, and Y. Kanai, "Precise modeling of magnetically-biased graphene through a recursive convolutional FDTD method," IEEE Transactions on Magnetics, Vol. 54, 233-241, 2018.
doi:10.1109/TMAG.2017.2749558 Google Scholar
6. Wang, X.-H., W.-Y. Yin, and Z. Chen, "Matrix exponential FDTD modeling of magnetized graphene sheet," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1129-1132, 2013.
doi:10.1109/LAWP.2013.2281053 Google Scholar
7. Cao, Y. S., P. Li, L. J. Jiang, and A. E. Ruehli, "The derived equivalent circuit model for magnetized anisotropic graphene," IEEE Antennas and Wireless Propagation Letters, Vol. 65, 948-953, 2017.
doi:10.1109/TAP.2016.2633222 Google Scholar
8. Shao, Y., J. J. Yang, and M. Huang, "A review of computational electromagnetic methods for graphene modeling," International Journal of Antennas and Propagation, Vol. 81, 1-6, 2016.
doi:10.1155/2016/7478621 Google Scholar
9. Azizi, M., M. Boussouis, H. Aubert, and H. Baudrand, "A three-dimensional analysis of planar discontinuities by an iterative method," Microwave and Optical Technology Letters, Vol. 13, 372-376, 1996.
doi:10.1002/(SICI)1098-2760(19961220)13:6<372::AID-MOP16>3.0.CO;2-5 Google Scholar
10. Gharsallah, A., A. Gharbi, and H. Baudrand, "Efficient analysis of multiport passive circuits using the iterative technique," Electromagnetics, Vol. 81, 73-84, 2001.
doi:10.1080/02726340151087996 Google Scholar
11. Zairi, H., A. Gharsallah, A. Gharbi, and H. Baudrand, "A new iterative method for analysing nonlinear photonic-crystal structures," International Journal of Electronics, Vol. 97, 1329-1337, 2010.
doi:10.1080/00207217.2010.488905 Google Scholar
12. Mami, A., H. Zairi, A. Gharsallah, and H. Baudrand, "Analysis of microwave components and circuits using the iterative method," International Journal of RF and Microwave, Vol. 81, 404-414, 2004.
doi:10.1002/mmce.20027 Google Scholar
13. Tellache, M., Y. Lamhene, B. Haraoubia, and H. Baudrand, "Application of wave concept iterative process to analyse microwave planar circuits," International Journal of Applied Electromagnetics and Mechanics, Vol. 29, 131-143, 2009.
doi:10.3233/JAE-2009-1007 Google Scholar
14. Houaneb, Z., H. Zairi, A. Gharsallah, and H. Baudrand, "A newwave concept iterative method in cylindrical coordinates for modeling of circular planar circuits," Eighth Inter. Multi-Conference on Systems, Signals Devices, 1-7, 2011. Google Scholar
15. Zairi, H., A. Gharsallah, A. Gharbi, and H. Baudrand, "Analysis of planar circuits using a multigrid iterative method," IEE Proc. Micro., Antennas and Prop., Vol. 153, 109-162, 2006. Google Scholar
16. Li, P. and L. J. Jiang, "Modeling of magnetized graphene from microwave to THz range by DGTD with a scalar RBC and an ADE," IEEE Transactions on Antennas and Propagation, Vol. 63, 4458-4467, 2015.
doi:10.1109/TAP.2015.2456977 Google Scholar
17. Shapoval, O. V., J. S. Gomez-Diaz, J. Perruisseau-Carrier, J. R. Mosig, and A. I. Nosich, "Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range," IEEE Transactions on Terahertz Science and Technology, Vol. 3, 666-674, 2013.
doi:10.1109/TTHZ.2013.2263805 Google Scholar
18. Guo, Y., T. Zhang, W.-Y. Yin, and X.-H. Wang, "Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications," IEEE Transactions on Terahertz Science and Technology, Vol. 5, 358-367, 2015.
doi:10.1109/TTHZ.2015.2399105 Google Scholar
19. Sounas, D. L. and C. Caloz, "Gyrotropy and nonreciprocity of graphene for microwave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 901-914, 2012.
doi:10.1109/TMTT.2011.2182205 Google Scholar
20. Chang, Z. and K. S. Chiang, "Experimental verification of optical models of graphene with multimode slab waveguides," Optics Letters, Vol. 4, 2130-2134, 2016. Google Scholar