Vol. 89
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-12-29
Effective Modeling of Magnetized Graphene by the Wave Concept Iterative Process Method Using Boundary Conditions
By
Progress In Electromagnetics Research C, Vol. 89, 121-132, 2019
Abstract
Due to static magnetic field, the conductivity of graphene becomes an anisotropic tensor, which complicates most modeling methodologies. A practical approach to the Wave Concept Iterative Process method (WCIP) modeling of magnetized graphene sheets as an anisotropic conductive surface from the microwave to terahertz frequencies is proposed. We first introduce a brief description of modeling magnetized graphene as an infinitesimally thin conductive sheet. Then, we present a novel manner for the implementation of the anisotropic boundary conditions using the wave concept in the WCIP method. This proposed method is benchmarked with numerical examples to demonstrate its applicability and accuracy. The proposed approach is used to compare the anisotropic model, isotropic model, and the metal for a strip waveguide. We show that the anisotropic model gives more efficient results.
Citation
AYMEN HLALI Zied Houaneb Hassen Zairi , "Effective Modeling of Magnetized Graphene by the Wave Concept Iterative Process Method Using Boundary Conditions," Progress In Electromagnetics Research C, Vol. 89, 121-132, 2019.
doi:10.2528/PIERC18111514
http://www.jpier.org/PIERC/pier.php?paper=18111514
References

1. Hanson, G. W., "Dyadic Green's functions for an anisotropic, non-local model of biased graphene," IEEE Transactions on Antennas and Propagation, Vol. 103, 747-757, 2008.
doi:10.1109/TAP.2008.917005

2. Lovat, G., "Equivalent circuit for electromagnetic interaction and transmission through graphene sheets," IEEE Transactions on Electromagnetic, Vol. 54, 101-109, 2012.
doi:10.1109/TEMC.2011.2169072

3. Tamagnone, M., A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, "Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices," Nature Photonics, 556-563, 2014.
doi:10.1038/nphoton.2014.109

4. Feizi, M., V. Nayyeri, and O. M. Ramahi, "Modeling magnetized graphene in thefinite-difference time-domain method using an anisotropic surface boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 66, 233-241, 2018.
doi:10.1109/TAP.2017.2768081

5. Amanatiadis, S. A., N. V. Kantartzis, T. Ohtani, and Y. Kanai, "Precise modeling of magnetically-biased graphene through a recursive convolutional FDTD method," IEEE Transactions on Magnetics, Vol. 54, 233-241, 2018.
doi:10.1109/TMAG.2017.2749558

6. Wang, X.-H., W.-Y. Yin, and Z. Chen, "Matrix exponential FDTD modeling of magnetized graphene sheet," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1129-1132, 2013.
doi:10.1109/LAWP.2013.2281053

7. Cao, Y. S., P. Li, L. J. Jiang, and A. E. Ruehli, "The derived equivalent circuit model for magnetized anisotropic graphene," IEEE Antennas and Wireless Propagation Letters, Vol. 65, 948-953, 2017.
doi:10.1109/TAP.2016.2633222

8. Shao, Y., J. J. Yang, and M. Huang, "A review of computational electromagnetic methods for graphene modeling," International Journal of Antennas and Propagation, Vol. 81, 1-6, 2016.
doi:10.1155/2016/7478621

9. Azizi, M., M. Boussouis, H. Aubert, and H. Baudrand, "A three-dimensional analysis of planar discontinuities by an iterative method," Microwave and Optical Technology Letters, Vol. 13, 372-376, 1996.
doi:10.1002/(SICI)1098-2760(19961220)13:6<372::AID-MOP16>3.0.CO;2-5

10. Gharsallah, A., A. Gharbi, and H. Baudrand, "Efficient analysis of multiport passive circuits using the iterative technique," Electromagnetics, Vol. 81, 73-84, 2001.
doi:10.1080/02726340151087996

11. Zairi, H., A. Gharsallah, A. Gharbi, and H. Baudrand, "A new iterative method for analysing nonlinear photonic-crystal structures," International Journal of Electronics, Vol. 97, 1329-1337, 2010.
doi:10.1080/00207217.2010.488905

12. Mami, A., H. Zairi, A. Gharsallah, and H. Baudrand, "Analysis of microwave components and circuits using the iterative method," International Journal of RF and Microwave, Vol. 81, 404-414, 2004.
doi:10.1002/mmce.20027

13. Tellache, M., Y. Lamhene, B. Haraoubia, and H. Baudrand, "Application of wave concept iterative process to analyse microwave planar circuits," International Journal of Applied Electromagnetics and Mechanics, Vol. 29, 131-143, 2009.
doi:10.3233/JAE-2009-1007

14. Houaneb, Z., H. Zairi, A. Gharsallah, and H. Baudrand, "A newwave concept iterative method in cylindrical coordinates for modeling of circular planar circuits," Eighth Inter. Multi-Conference on Systems, Signals Devices, 1-7, 2011.

15. Zairi, H., A. Gharsallah, A. Gharbi, and H. Baudrand, "Analysis of planar circuits using a multigrid iterative method," IEE Proc. Micro., Antennas and Prop., Vol. 153, 109-162, 2006.

16. Li, P. and L. J. Jiang, "Modeling of magnetized graphene from microwave to THz range by DGTD with a scalar RBC and an ADE," IEEE Transactions on Antennas and Propagation, Vol. 63, 4458-4467, 2015.
doi:10.1109/TAP.2015.2456977

17. Shapoval, O. V., J. S. Gomez-Diaz, J. Perruisseau-Carrier, J. R. Mosig, and A. I. Nosich, "Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range," IEEE Transactions on Terahertz Science and Technology, Vol. 3, 666-674, 2013.
doi:10.1109/TTHZ.2013.2263805

18. Guo, Y., T. Zhang, W.-Y. Yin, and X.-H. Wang, "Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications," IEEE Transactions on Terahertz Science and Technology, Vol. 5, 358-367, 2015.
doi:10.1109/TTHZ.2015.2399105

19. Sounas, D. L. and C. Caloz, "Gyrotropy and nonreciprocity of graphene for microwave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 901-914, 2012.
doi:10.1109/TMTT.2011.2182205

20. Chang, Z. and K. S. Chiang, "Experimental verification of optical models of graphene with multimode slab waveguides," Optics Letters, Vol. 4, 2130-2134, 2016.