1. Koo, B., Y. Na, and S. Hong, "Integrated bias circuits of RF CMOS cascode power amplifier for linearity enhancement," IEEE Trans. Microw. Theory Tech., Vol. 60, 340-351, 2012.
doi:10.1109/TMTT.2011.2177857 Google Scholar
2. Joo, T., H. Lee, S. Shim, and S. Hong, "CMOS RF power amplifier for UHF stationary RFID reader," IEEE Microw. Wireless Compon. Lett., Vol. 20, 106-108, 2010.
doi:10.1109/LMWC.2009.2038552 Google Scholar
3. Aoki, I., S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Distributed active transformer - A new power-combining and impedance-transformation technique," IEEE Trans. Microw. Theory Tech., Vol. 50, 316-331, 2002.
doi:10.1109/22.981284 Google Scholar
4. Lee, O., K.H. An, C.-H. Lee, and J. Laskar, "A Parallel-segmented monolithic step-up transformer," IEEE Microw. Wireless Compon. Lett., Vol. 21, 468-470, 2011.
doi:10.1109/LMWC.2011.2161976 Google Scholar
5. Aloui, S., B. Leite, N. Demirel, R. Plana, D. Belot, and E. Kerherve, "High-gain and linear 60-GHz power amplifier with a thin digital 65-nm CMOS technology," IEEE Trans. Microw. Theory Tech., Vol. 61, 2425-2437, 2013.
doi:10.1109/TMTT.2013.2258169 Google Scholar
6. Lee, Y. and S. Hong, "A dual-power-mode output matching network for digitally modulated CMOS power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 61, 1570-1579, 2013.
doi:10.1109/TMTT.2013.2246525 Google Scholar
7. Park, C., J. Han, H. Kim, and S. Hong, "A 1.8-GHz CMOS power amplifier using a dual-primary transformer with improved efficiency in the low power region," IEEE Trans. Microw. Theory Tech., Vol. 56, 782-792, 2008.
doi:10.1109/TMTT.2008.918152 Google Scholar
8. Lee, C., J. Park, and C. Park, "X-band cmos power amplifier using mode-locking method for sensor applications," J. of Electromagn. Waves and Appl., Vol. 26, 633-640, 2012.
doi:10.1080/09205071.2012.710783 Google Scholar
9. Francois, B. and P. Reynaert, "A fully integrated watt-level linear 900-MHz CMOS RF power amplifier for LTE-applications," IEEE Trans. Microw. Theory Tech., Vol. 60, 1878-1885, 2012.
doi:10.1109/TMTT.2012.2189411 Google Scholar
10. Hwang, H. and C. Park, "Current shared cascade structure for the driver stages of switching mode RF power amplifiers," IEEE Microw. Wireless Compon. Lett., Vol. 23, 605-607, 2013.
doi:10.1109/LMWC.2013.2280634 Google Scholar
11. Hwang, H., D. Seo, J. Park, and C. Park, "Investigation of the power transistor size related to the efficiency of switching-mode RF CMOS power amplifiers," Microw. Opt. Technol., Vol. 56, 110-117, 2013.
doi:10.1002/mop.28068 Google Scholar
12. Chen, Y.-C., Y.-H. Lin, J.-L. Lin, and H. Wang, "A Ka-band transformer-based doherty power amplifier for multi-Gb/s application in 90-nm CMOS," IEEE Microw. Wireless Compon. Lett., Vol. 28, 1134-1136, 2018.
doi:10.1109/LMWC.2018.2878133 Google Scholar
13. Wu, C.-W., Y.-H. Lin, Y.-H. Hsiao, C.-F. Chou, Y.-C. Wu, and H. Wang, "Design of a 60-GHz high-output power stacked-FET power amplifier using transformer-based voltage-type power combining in 65-nm CMOS," IEEE Trans. Microw. Theory Tech., Vol. 66, 4595-4607, 2018. Google Scholar
14. Tsai, J.-H. and J.-W. Wang, "An X-band half-watt CMOS power amplifier using interweaved parallel combining transformer," IEEE Microw. Wireless Compon. Lett., Vol. 27, 491-493, 2017.
doi:10.1109/LMWC.2017.2690878 Google Scholar
15. Ahn, H., S. Baek, I. Nam, D. An, J.K. Lee, M. Jeong, B.-E. Kim, J. Choi, and O. Lee, "A fully integrated dual-mode CMOS power amplifier with an autotransformer-based parallel combining transformer," IEEE Microw. Wireless Compon. Lett., Vol. 27, 833-835, 2017.
doi:10.1109/LMWC.2017.2734762 Google Scholar