Vol. 91
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-03-20
A Novel Lightweight SARNet with Clock-Wise Data Amplification for SAR ATR
By
Progress In Electromagnetics Research C, Vol. 91, 69-82, 2019
Abstract
Convolutional Neural Network (CNN) models applied to synthetic aperture radar automatic target recognition (SAR ATR) universally focus on two important issues: overfitting caused by lack of sufficient training data and independent variations like worse estimates of the aspect angle etc. To this end, we developed a lightweight CNN-based method named SARNet to accomplish the classification task. Firstly, a clock-wise data amplification approach is presented to generate adequate SAR images without requiring many raw SAR images, effectively avoiding overfitting in the course of training. Then a SARNet is devised to process the extracted features from SAR target images and work on classification tasks with parameters fine-tuning under comparative models. To enhance and structurally organize the representation of learned proposed model, various activation functions are explored in this paper. Furthermore, due to the pioneering conducted experiments, training samples in the MSTAR and extended MSTAR database are utilized to demonstrate the robustness and effectiveness of the lightweight model. Experimental results have shown that our proposed model has achieved a 98.30% state-of-the-art accuracy.
Citation
Yikui Zhai, Wenbo Deng, Yanqing Zhu, Ying Xu, Bing Sun, Jingwen Li, Qirui Ke, Yihang Zhi, and Vincenzo Pirui, "A Novel Lightweight SARNet with Clock-Wise Data Amplification for SAR ATR," Progress In Electromagnetics Research C, Vol. 91, 69-82, 2019.
doi:10.2528/PIERC18120305
References

1. Liu, S., M. Liu, P. Li, et al. "SAR image denoising via sparse representation in shearlet domain based on continuous cycle spinning," IEEE TRGS, Vol. 55, No. 5, 2985-2992, 2017.        Google Scholar

2. Cloude, S. R. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE TRGS, Vol. 35, No. 1, 68-78, 1997.        Google Scholar

3. Singh, M. and G. Kaur, "SAR image classification using PCA and texture analysis," Information Technology and Mobile Communication, 435-439, Springer, Berlin, Heidelberg, 2011.        Google Scholar

4. Mishra, A. K., "Validation of PCA and LDA for SAR ATR," TENCON 2008 — 2008 IEEE Region 10 Conference, 1-6, 2008.        Google Scholar

5. Li, Q., G. Qu, and Z. Li, "Matching between SAR images and optical images based on HOG descriptor," International Radar Conference IET, 1-4, 2013.        Google Scholar

6. Huan, R. H., Y. Pan, and K. J. Mao, "SAR image target recognition based on NMF feature extraction and Bayesian decision fusion," IITA-GRS, 496-499, 2010.        Google Scholar

7. Cao, Z. J., Y. C. Ge, and J. L. Feng, "SAR image classification with a sample reusable domain adaptation algorithm based on SVM classifier," Pattern Recognition, 2017.        Google Scholar

8. Khosravi, I., A. Safari, S. Homayouni, et al. "Enhanced decision tree ensembles for land-cover mapping from fully polarimetric SAR data," IJRS, Vol. 38, No. 23, 7138-7160, 2017.        Google Scholar

9. Xu, G., M. Xing, L. Zhang, et al. "Bayesian inverse synthetic aperture radar imaging," IEEE GRSL, Vol. 8, No. 6, 1150-1154, 2011.        Google Scholar

10. Huo, W., Y. Huang, J. Pei, et al. "Virtual SAR target image generation and similarity," 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 914-917, IEEE, 2016.        Google Scholar

11. Zhao, Q. and J. C. Principe, "Support vector machine for SAR automatic target recognition,", Vol. 37, No. 2, 643-654, 2001.        Google Scholar

12. Sun, Y., Z. Liu, and J. Li, "Adaptive boosting for SAR automatic target recognition," IEEE TGRS, Vol. 43, No. 1, 112-125, 2007.        Google Scholar

13. Zhou, J. X., Z. G. Shi, X. Cheng, and Q. Fu, "Automatic target recognition of SAR images based on global scattering center model," IEEE TGRS, Vol. 49, No. 10, 3713-3729, 2011.        Google Scholar

14. Park, J., S. H. Park, and K. T. Kim, "New discrimination features for SAR automatic target recognition," IEEE GRSL, Vol. 10, No. 3, 476-480, 2013.        Google Scholar

15. Dong, G., N. Wang, and G. Kuang, "Sparse representation of monogenic signal: With application to target recognition in SAR images," IEEE GRSL, Vol. 21, No. 8, 952-956, 2014.        Google Scholar

16. Clemente, C., et al. "Pseudo-Zernike based multi-pass automatic target recognition from multichannel SAR," IET RSN, Vol. 9, No. 4, 457-466, 2015.        Google Scholar

17. Mishra, A. K. and B. Mulgrew, "Bistatic SAR ATR using PCA-based features," Automatic Target Recognition XVI, Vol. 6234, International Society for Optics and Photonics, 2006.        Google Scholar

18. Ash, J. N., "Joint imaging and change detection for robust exploitation in interrupted SAR environments," Algorithms for Synthetic Aperture Radar Imagery XX, Vol. 8746, 87460J, International Society for Optics and Photonics, 2013.        Google Scholar

19. Zhang, Y. D., L. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.        Google Scholar

20. Zhai, Y., J. Li, J. Gan, and Z. Ying, "A multi-scale local phase quantization plus biomimetic pattern recognition method for SAR automatic target recognition," Progress In Electromagnetics Research, Vol. 135, 105-122, 2013.        Google Scholar

21. Mishra, B. and J. Susaki, "Coupling of thresholding and region growing algorithm for change detection in SAR images," Progress In Electromagnetics Research, Vol. 143, 519-544, 2013.        Google Scholar

22. Gao, G., X. Qin, and S. Zhou, "Modeling SAR images based on a generalized gamma distribution for texture component," Progress In Electromagnetics Research, Vol. 137, 669-685, 2013.        Google Scholar

23. Cheng, J., G. Gao, W. Ding, X. Ku, and J. Sun, "An improved scheme for parameter estimation of G◦ distribution model in high-resolution SAR images," Progress In Electromagnetics Research, Vol. 134, 23-46, 2013.        Google Scholar

24. Ni, W. P., W. D. Yan, J. Z. Wu, et al. "Moment feature analysis and multi-threshold segmentation of MSTAR image," JOIG, Vol. 18, No. 10, 2018.        Google Scholar

25. Fu, F. C., "SAR target recognition method based on target region matching," EO&C, Vol. 4, 2018.        Google Scholar

26. Ding, J., B. Chen, H. Liu, et al. "Convolutional neural network with data amplification for SAR target recognition," IEEE, Vol. 13, No. 3, 364-368, 2016.        Google Scholar

27. Chen, S., H. Wang, F. Xu, et al. "Target classification using the deep convolutional networks for SAR images," IEEE TGRS, Vol. 54, No. 8, 4806-4817, 2016.        Google Scholar

28. Zhao, W. and S. Du, "Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach," IEEE TGRS, Vol. 54, No. 8, 4544-4554, 2016.        Google Scholar

29. Marmanis, D., M. Datcu, T. Esch, et al. "Deep learning earth observation classification using ImageNet pertained networks," IEEE GRSL, Vol. 13, No. 1, 105-109, 2016.        Google Scholar

30. AbdAlmageed, W., Y. Wu, S. Rawls, et al. "Face recognition using deep multi-pose representations," 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 1-9, IEEE, 2016.        Google Scholar

31. Morgan, D. A. E., "Deep convolutional neural networks for ATR from SAR imagery," Algorithms for Synthetic Aperture Radar Imagery XXII, Vol. 9475, 94750F, International Society for Optics and Photonics, 2015.        Google Scholar

32. Profeta, A., A. Rodriguez, and H. S. Clouse, "Convolutional neural networks for synthetic aperture radar classification," Algorithms for Synthetic Aperture Radar Imagery XXIII, 9843–98430M, International Society for Optics and Photonics, 2016.        Google Scholar

33. Wilmanski, M., C. Kreucher, and J. Lauer, "Modern approaches in deep learning for SAR ATR," Algorithms for Synthetic Aperture Radar Imagery XXIII, International Society for Optics and Photonics, 9843–98430N, 2016.        Google Scholar

34. Ødegaard, N., A. O. Knapskog, C. Cochin, et al. "Classification of ships using real and simulated data in a convolutional neural network," 2016 IEEE Radar Conference, 1-6, IEEE, 2016.        Google Scholar

35. Liu, C., C. W. Qu, et al. "Target classification of SAR images based on convolution neural network migration learning," Modern Radar, Vol. 3, 2018.        Google Scholar

36. Krizhevsky, A., I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," International Conference on Neural Information Processing Systems, Curran Associates Inc., 2012.        Google Scholar

37. Lecun, Y. L., et al. "Gradient-based learning applied to document recognition," Proceedings of the IEEE, Vol. 86, No. 11, 2278-2324, 1998.        Google Scholar

38. He, K. M., et al. "Deep residual learning for image recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.        Google Scholar

39. Qi, H. J., Y. H. Wang, J. Ding, et al. "SAR target recognition based on Multi-information dictionary learning and sparse representation," J. Syst. Eng. Electron., Vol. 37, No. 6, 1280-1287, 2015.        Google Scholar

40. Wu, T., et al. "Study on SAR target recognition based on Support Vector Machine," IEEE Conference on Synthetic Aperture Radar, Asian-Pacific, 856-859, 2010.        Google Scholar

41. Zhai, Y. K., J. Li, J. Y. Gan, et al. "A multi-scale local phase quantization plus biomimetic pattern recognition method for SAR automatic target recognition," Progress In Electromagnetics Research, Vol. 135, No. 1, 105-122, 2013.        Google Scholar

42. Wang, L., F. Zhang, W. Li, et al. "A method of SAR target recognition based on gabor filter and local texture feature extraction," JOR, Vol. 4, No. 6, 658-665, 2015.        Google Scholar

43. Zhang, H., N. M. Nasrabadi, Y. Zhang, et al. "Multi-view automatic target recognition using joint sparse representation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 3, 2481-2497, 2012.        Google Scholar

44. Tian, Z. Z., R. H. Zhan, J. M. Hu, et al. "SAR ATR based on convolutional neural network," Journal of Radars, Vol. 5, No. 3, 320-325, 2016.        Google Scholar

45. Sun, Y., Z. Liu, S. Todorovic, et al. "Adaptive boosting for SAR automatic target recognition," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 1, 112-125, 2007.        Google Scholar

46. Liu, K. P., Z. L. Ying, and Y. K. Zhai, "SAR image target recognition based on unsupervised k-means feature and data amplification," JOSP, Vol. 33, No. 3, 456-458, 2017 (in Chinese).        Google Scholar