Vol. 78
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-02-11
Beam Wander of the Multi-Gaussian Schell-Model Beam in Anisotropic Turbulence
By
Progress In Electromagnetics Research M, Vol. 78, 185-192, 2019
Abstract
Based on the extended Huygens-Fresnel principle, the expressions of degree of coherence, ellipticity, and beam wander of multi-Gaussian Schell-model beam through the anisotropic turbulence are derived. Their statistical properties in anisotropic turbulence are illustrated numerically. The results show that the beam width and beam wander of multi-Gaussian Schell-model beam decrease with the increase of the mode order or the decrease of the turbulence structure parameter and initial coherence and that the degree of coherence of multi-Gaussian Schell-model beam decreases with the increase of the turbulence structure parameter or the decrease of the mode order. Furthermore, the beam wander of multi-Gaussian Schell-model beam is smaller than that of Gaussian Schell-model beam under the same conditions.
Citation
Jie Shu, Huafeng Xu, Zheng-Lan Zhou, and Jun Qu, "Beam Wander of the Multi-Gaussian Schell-Model Beam in Anisotropic Turbulence," Progress In Electromagnetics Research M, Vol. 78, 185-192, 2019.
doi:10.2528/PIERM18120601
References

1. Shirai, T., A. Dogariu, and E. Wolf, "Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence," Opt. Lett., Vol. 28, No. 8, 610, 2003.
doi:10.1364/OL.28.000610

2. Wu, G., H. Guo, S. Yu, and B. Luo, "Spreading and direction of Gaussian-Schell model beam through a non-Kolmogorov turbulence," Opt. Lett., Vol. 35, No. 5, 715-717, 2010.
doi:10.1364/OL.35.000715

3. Gori, F., V. Ramirezsanchez, M. Santarsiero, and T. Shirai, "On genuine cross-spectral density matrices," Opt. A: Pure Appl. Opt., Vol. 11, No. 8, 85706-85707, 2009.
doi:10.1088/1464-4258/11/8/085706

4. Korotkova, O., S. Sahin, and E. Shchepakina, "Multi-Gaussian Schell-model beams," J. Opt. Soc. Am. A, Vol. 29, No. 10, 2159-2164, 2012.
doi:10.1364/JOSAA.29.002159

5. Zhou, Y., Y. Yuan, J. Qu, and W. Huang, "Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence," Opt. Express, Vol. 24, No. 10, 10682-10693, 2016.
doi:10.1364/OE.24.010682

6. Mei, Z. and O. Korotkova, "Random sources generating ring-shaped beams," Opt. Lett., Vol. 38, No. 2, 91-93, 2013.
doi:10.1364/OL.38.000091

7. Wu, G., W. Dai, H. Tang, and H. Guo, "Beam wander of random electromagnetic Gaussian-shell model vortex beams propagating through a Kolmogorov turbulence," Opt. Communications, Vol. 336, 55-58, 2015.
doi:10.1016/j.optcom.2014.08.052

8. Tofsted, D., "Outer-scale effects on beam-wander and angle-of-arrival variances," Appl. Opt., Vol. 31, No. 27, 5865-5870, 1992.
doi:10.1364/AO.31.005865

9. Zunino, L., D. Gulich, G. Funes, and D. Perez, "Turbulence-induced persistence in laser beam wandering," Opt. Lett., Vol. 40, No. 13, 3145-3148, 2015.
doi:10.1364/OL.40.003145

10. Chen, X. and X. Ji, "Directionality of partially coherent annular flat-topped beams propagating through atmospheric turbulence," Opt. Communications, Vol. 281, No. 18, 4765-4770, 2008.
doi:10.1016/j.optcom.2008.06.012

11. Gbur, G. and E. Wolf, "Spreading of partially coherent beams in random media," J. Opt. Soc. Am. A, Vol. 19, No. 8, 1592, 2002.
doi:10.1364/JOSAA.19.001592

12. Yao, M., I. Toselli, and O. Korotkova, "Propagation of electromagnetic stochastic beams in anisotropic turbulence," Opt. Express, Vol. 22, No. 26, 31608-31619, 2014.
doi:10.1364/OE.22.031608

13. Wang, M., X. Yuan, J. Li, X. Zhou, Q. Li, and Z. Zhou, "Propagation of radial partially coherent beams in anisotropic non-kolmogorov turbulence," Acta Optica Sinica, Vol. 38, No. 3, 0306003, 2018.
doi:10.3788/AOS201838.0306003

14. Cui, L., B. Xue, and F. Zhou, "Generalized anisotropic turbulence spectra and applications in the optical waves’ propagation through anisotropic turbulence," Opt. Express, Vol. 23, No. 23, 30088, 2015.
doi:10.1364/OE.23.030088

15. Cheng, M., L. Guo, J. Li, X. Yan, K. Dong, and Y. You, "Average intensity and spreading of a radially polarized multi-Gaussian Schell-model beam in anisotropic turbulence," Quant. Spectrosc. Radiat. Transf., Vol. 218, 12-20, 2018.
doi:10.1016/j.jqsrt.2018.06.024

16. Wang, F., C. Liang, Y. Yuan, and Y. Cai, "Generalized multi-Gaussian correlated Schell-model beam: from theory to experiment," Opt. Express, Vol. 22, No. 19, 23456, 2014.
doi:10.1364/OE.22.023456

17. Yuan, Y., X. Liu, F. Wang, Y. Chen, Y. Cai, and J. Qu, "Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere," Opt. Communications, Vol. 305, No. 3, 57-65, 2013.
doi:10.1016/j.optcom.2013.04.076

18. Zhang, Y., L. Liu, C. Zhao, and Y. Cai, "Multi-Gaussian Schell-model vortex beam," Phys. Let. A, Vol. 378, No. 9, 750-754, 2014.
doi:10.1016/j.physleta.2013.12.039

19. Wang, F. and O. Korotkova, "Random optical beam propagation in anisotropic turbulence along horizontal links," Opt. Express, Vol. 24, No. 21, 24422-24434, 2016.
doi:10.1364/OE.24.024422

20. Bateman, H., A. Erdélyi, H. Haeringen, and L. Kok, Tables of Integral Transforms, 653-667, McGraw-Hill, New York, 1954.

21. Andrews, L. and R. Phillips, Laser Beam Propagation through Random Media, 2nd Ed., 201-205, SPIE Press, Bellingham, 2005.
doi:10.1117/3.626196