Vol. 78
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-28
Analysis and Reduction of Cogging Torque of Line-Start Permanent Magnet Motors
By
Progress In Electromagnetics Research M, Vol. 78, 115-124, 2019
Abstract
Compared with a standard permanent magnet synchronous motor, a line-start permanent magnet synchronous motor (LSPMSM) has additional features that include two-sided slots on its stator and rotor. Thus, due to its complex air gap form, there is no simple method to calculate the cogging torque of this kind of motor at present. This paper presents a new analytical method that models the rotor as an equivalent magnetic motive force (MMF) distribution in the air gap which avoids the influence of rotor slotting in the air gap. Based on the energy method, an analytical method is presented here to analyze the pole-slot match of stator and the influence of number of slots per pole of rotor on the cogging torque. The effect of auxiliary slots on cogging torque of LSPMSM is studied and by changing the number of auxiliary slots to reduce the cogging torque, the correctness of the above method has been validated by the finite element method.
Citation
Libing Jing Jun Gong Ying Lin , "Analysis and Reduction of Cogging Torque of Line-Start Permanent Magnet Motors," Progress In Electromagnetics Research M, Vol. 78, 115-124, 2019.
doi:10.2528/PIERM18120902
http://www.jpier.org/PIERM/pier.php?paper=18120902
References

1. Akeshi, T., K. Satoshi, M. Kenji, and B. Andreas, "Asynchronous torque of line-starting permanent-magnet synchronous motors," IEEE Trans. Energy Convers., Vol. 30, No. 2, 498-506, 2015.
doi:10.1109/TEC.2014.2361836

2. Mahmoudi, A., S. Kahourzade, N. A. Rahim, H. W. Ping, and N. F. Ershad, "Slot less torus solid rotor ringed line-start axial flux permanent magnet motor," Progress In Electromagnetics Research, Vol. 131, 331-355, 2012.
doi:10.2528/PIER12070308

3. Villani, M., M. Santececca, and F. Parasiliti, "High-efficiency line-start synchronous reluctance motor for fan and pump applications," 2018 XIII International Conference on Electrical Machines (ICEM), 2178-2184, 2018.
doi:10.1109/ICELMACH.2018.8507230

4. Mahmoudi, A., S. Kahourzade, N. A. Rahim, and H. W. Ping, "Improvement to performance of solid-rotor-ringed line-start axial-flux permanent-magnet motor," Progress In Electromagnetics Research, Vol. 124, 383-404, 2012.
doi:10.2528/PIER11122501

5. Tian, M. M., X. H. Wang, and D. H. Wang, "The analysis of the influences of switching opportunity for a novel 6/8 pole changing line-start permanent magnet synchronous motor," 20th International Conference on Electrical Machines and Systems (ICEMS), 1-5, 2017.

6. Isfahani, A. H. and S. V. Zadeh, "Effects of magnetizing inductance on start-up and synchronization of line-start permanent-magnet synchronous motors," IEEE Trans. Magn., Vol. 47, No. 4, 823-829, 2011.
doi:10.1109/TMAG.2010.2091651

7. Lee, B. H., J. W. Jung, and J. P. Hong, "An improved analysis method of irreversible demagnetization for a single-phase line-start permanent magnet motor," IEEE Trans. Magn., Vol. 54, No. 11, ID: 8206905, 2018.

8. Aliabad, A. D. and F. Ghoroghchian, "Design and analysis of a two-speed line start synchronous motor: Scheme one," IEEE Trans. Energy Convers., Vol. 31, No. 1, 366-372, 2016.
doi:10.1109/TEC.2015.2481929

9. Ugale, R. T. and B. N. Chaudhari, "Rotor configurations for improved starting and synchronous motor," IEEE Trans. Ind. Electron., Vol. 64, No. 1, 138-148, 2017.
doi:10.1109/TIE.2016.2606587

10. Stioa, D., K. Hameyer, and B. Drago, "The behavior of the LSPMSM in asynchronous operation," 14th Int. Conf. Power Electronics and Motion Control, 45-50, 2010.

11. Aliabad, A. D., M. Mojtaba, and F. E. Nima, "Line start permanent magnet motors: significant improvement in starting torque, synchronization, and steady state performance," IEEE Trans. Magn., Vol. 46, No. 12, 4066-4072, 2010.
doi:10.1109/TMAG.2010.2070876

12. Wei, F. L., Y. L. Luo, and H. S. Zhao, "Influences of rotor bar design on the starting performance of line start permanent magnet asynchronous motor," 6th Int. Conf. Electromagnetic Field Problems and Applications, 1-4, 2012.

13. Edgar, P. S. and A. C. Smith, "Line start permanent magnet machines using a canned rotor," IEEE Trans. Ind. Appl., Vol. 45, No. 3, 903-910, 2009.
doi:10.1109/TIA.2009.2018981

14. Wu, D. and Z. Q. Zhu, "Design tradeoff between cogging torque and torque ripple in fractional slot surface mounted permanent magnet machines," IEEE Trans. Magn., Vol. 51, No. 11, ID: 8108704, 2015.

15. Azar, Z. and Z. Q. Zhu, "Investigation of torque-speed characteristics and cogging torque of fractional-slot IPM brushless AC machines having alternate slot openings," IEEE Trans. Ind. Appl., Vol. 48, No. 3, 903-912, 2012.
doi:10.1109/TIA.2012.2190962

16. Ren, W., Q. Xu, Q. Li, and L. B. Zhou, "Reduction of cogging torque and torque ripple in interior PM machines with asymmetrical V-type rotor design," IEEE Trans. Magn., Vol. 52, No. 7, ID: 8104105, 2016.

17. Kahourzade, S., A. Mahmoudi, A. Gandomkar, N. A. Rahim, H. W. Ping, and M. N. Uddin, "Design optimization and analysis of AFPM synchronous machine incorporating power density, thermal analysis, and back-EMF THD," Progress In Electromagnetics Research, Vol. 136, 327-367, 2013.
doi:10.2528/PIER12120204

18. Tiang, T. L., D. Ishak, C. P. Lim, and M. R. Mohamed, "Analytical method using virtual PM blocks to represent magnet segmentations in surface-mounted PM synchronous machines," Progress In Electromagnetics Research B, Vol. 76, 23-36, 2017.
doi:10.2528/PIERB17041501

19. Nguyen, V. T. and T. F. Lu, "Analytical expression of the magnetic field created by a permanent magnet with diametrical magnetization," Progress In Electromagnetics Research B, Vol. 87, 163-174, 2018.

20. Wang, X. H., T. T. Ding, and Y. B. Yang, "Study of cogging torque in line-start permanent magnet synchronous motors," Proceedings of the CSEE, Vol. 25, No. 18, 167-170, 2005.

21. Kang, G. H., Y. D. Son, and G. T. Kim, "A novel cogging torque reduction method for interior-type permanent magnet motor," IEEE Trans. Ind. Appl., Vol. 45, No. 1, 161-167, 2009.
doi:10.1109/TIA.2008.2009662