Vol. 82
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-28
A Novel Image Formation Method for Electromagnetic Vortex SAR with Orbital-Angular-Momentum
By
Progress In Electromagnetics Research M, Vol. 82, 129-137, 2019
Abstract
Electromagnetic (EM) vortex wave carrying orbital angular momentum (OAM) has attracted a lot of attention in radar imaging, due to its potential capability of new degree of freedom for information modulation. Most existing OAM-based radar imaging methods require abundant OAM modes to realize the azimuth resolution. Switching between the OAM modes frequently increases the burden of radar antenna and the complexity of beam steering. In this paper, a novel electromagnetic vortex synthetic aperture radar (EMV-SAR) model with equivalent squint imaging is established.The geometrical model and echo signal model are derived correspondingly. By analyzing the echo signal model, amplitude and phase modulation introduced by the OAM a ect the azimuth focusing, and traditional imaging algorithms are no longer applicable. Hence, a novel image formation method based on the traditional Chirp-Scaling (CS) algorithm is proposed for the EMV-SAR. The amplitude weighting function and phase modulation function are derived accurately, and high-precision focusing processing is achieved by modi ed CS algorithm. Point targets simulation results validate that the image focusing performance can be improved signi cantly using the proposed algorithm.
Citation
Yue Fang, Jie Chen, Pengbo Wang, Chun-Sheng Li, and Wei Liu, "A Novel Image Formation Method for Electromagnetic Vortex SAR with Orbital-Angular-Momentum," Progress In Electromagnetics Research M, Vol. 82, 129-137, 2019.
doi:10.2528/PIERM19011704
References

1. Wang, J., J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photonics, Vol. 6, No. 7, 488-496, 2012.
doi:10.1038/nphoton.2012.138

2. Bozinovic, N., Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science, Vol. 340, No. 6140, 1545-1548, 2013.
doi:10.1126/science.1237861

3. Mahmouli, F. E. and S. D. Walker, "4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel," IEEE Wireless Communications Letters, Vol. 2, No. 2, 223-226, 2013.
doi:10.1109/WCL.2013.012513.120686

4. Mohammadi, S., L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, "Orbital angular momentum in radio - A system study," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 565-572, 2010.
doi:10.1109/TAP.2009.2037701

5. Bai, Q., A. Tennant, and B. Allen, "Experimental circular phased array for generating OAM radio beams," Electronics Letters, Vol. 50, No. 20, 1414-1415, 2014.
doi:10.1049/el.2014.2860

6. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.
doi:10.2528/PIER14050204

7. Mao, F., T. Li, Y. Shao, J. Yang, and M. Huang, "Orbital angular momentum radiation from circular patches," Progress In Electromagnetics Research Letters, Vol. 61, 13-18, 2016.
doi:10.2528/PIERL16012604

8. Mao, F., M. Huang, T. Li, J. Zhang, and C. Yang, "Broadband generation of orbital angular momentum carrying beams in RF regimes," Progress In Electromagnetics Research, Vol. 160, 19-27, 2017.
doi:10.2528/PIER17082302

9. Cano, E., B. Allen, Q. Bai, and A. Tennant, "Generation and detection of OAM signals for radio communications," Antennas and Propagation Conference (LAPC), 637-640, 2014.

10. Tamburini, F., E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, "Encoding many channels in the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 3, 033001, 2011.
doi:10.1088/1367-2630/14/3/033001

11. Gibson, G., J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, "Free-space information transfer using light beams carrying orbital angular momentum," Optics Express, Vol. 12, No. 22, 5448-5456, 2004.
doi:10.1364/OPEX.12.005448

12. Gatto, A., M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, "Free-space orbital angular momentum division multiplexing with Bessel beams," Journal of Optics, Vol. 13, No. 6, 064018, 2011.
doi:10.1088/2040-8978/13/6/064018

13. Guo, G., W. Hu, and X. Du, "Electromagnetic vortex based radar target imaging," Journal of National University of Defense Technology, Vol. 35, No. 6, 2013.

14. Liu, K., Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, "Orbital-angular-momentum-based electromagnetic vortex imaging," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 711-714, 2015.
doi:10.1109/LAWP.2014.2376970

15. Liu, K., Y. Cheng, X. Li, H. Wang, Y. Qin, and Y. Jiang, "Study on the theory and method of vortex-electromagnetic-wave-based radar imaging," IET Microwaves Antennas and Propagation, Vol. 10, No. 9, 961-968, 2016.
doi:10.1049/iet-map.2015.0842

16. Yuan, T., H. Wang, Y. Qin, and Y. Cheng, "Electromagnetic vortex imaging using uniform concentric circular arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1024-1027, 2016.
doi:10.1109/LAWP.2015.2490169

17. Yuan, T., Y. Cheng, H. Wang, and Y. Qin, "Beam steering for electromagnetic vortex imaging using uniform circular arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 704-707, 2017.
doi:10.1109/LAWP.2016.2600404

18. Tang, B., J. Bai, and K.-Y. Guo, "Bi-target tracking based on vortex wave with orbital angular momentum," Progress In Electromagnetics Research C, Vol. 74, 123-129, 2017.
doi:10.2528/PIERC17030607

19. Thidé , B., H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. Carozzi, Y. N. Istomin, N. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, 2007.
doi:10.1103/PhysRevLett.99.087701

20. Raney, R. K., H. Runge, R. Bamler, I. G. Cumming, and F. H. Wong, "Precision SAR processing using chirp scaling," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 4, 786-799, 1994.
doi:10.1109/36.298008

21. Zhang, C., D. Chen, and X. Jiang, "RCS diversity of electromagnetic wave carrying orbital angular momentum," Scientific Reports, Vol. 7, No. 1, 15412, 2017.
doi:10.1038/s41598-017-15250-7