1. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651 Google Scholar
2. Riccio, G., "Uniform asymptotic physical optics solutions for a set of diffraction problems," Wave Propagation in Materials for Modern Applications, 33-54, A. Petrin Ed., Intech, Vukovar, HR, 2010. Google Scholar
3. Gennarelli, G. and G. Riccio, "A uniform asymptotic solution for diffraction by a right-angled dielectric wedge," IEEE Trans. Antennas Propagat., Vol. 59, 898-903, 2011.
doi:10.1109/TAP.2010.2103031 Google Scholar
4. Gennarelli, G. and G. Riccio, "Plane-wave diffraction by an obtuse-angled dielectric wedge," J. Opt. Soc. Am. A, Vol. 28, 627-632, 2011.
doi:10.1364/JOSAA.28.000627 Google Scholar
5. Gennarelli, G., M. Frongillo, and G. Riccio, "High-frequency evaluation of the field inside and outside an acute-angled dielectric wedge," IEEE Trans. Antennas Propagat., Vol. 63, 374-378, 2015.
doi:10.1109/TAP.2014.2364305 Google Scholar
6. Frongillo, M., G. Gennarelli, and G. Riccio, "Plane wave diffraction by arbitrary-angled lossless wedges: High-frequency and time-domain solutions," IEEE Trans. Antennas Propagat., Vol. 66, 6646-6653, 2018.
doi:10.1109/TAP.2018.2876602 Google Scholar
7. Berntsen, S., "Diffraction of an electric polarized wave by a dielectric wedge," SIAM J. Appl. Math., Vol. 43, 186-211, 1983.
doi:10.1137/0143013 Google Scholar
8. Rawlins, A. D., "Diffraction by, or diffusion into, a penetrable wedge," Proc. R. Soc. Lond. A, Vol. 455, 2655-2686, 1999.
doi:10.1098/rspa.1999.0421 Google Scholar
9. Burge, R. E., et al. "Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD," IEEE Trans. Antennas Propagat., Vol. 47, 1515-1527, 1999.
doi:10.1109/8.805894 Google Scholar
10. Rouviere, J. F., N. Douchin, and P. F. Combes, "Diffraction by lossy dielectric wedges using both heuristic UTD formulations and FDTD," IEEE Trans. Antennas Propagat., Vol. 47, 1702-1708, 1999.
doi:10.1109/8.814950 Google Scholar
11. Seo, C. H. and J. W. Ra, "Plane wave scattering by a lossy dielectric wedge," Microwave Opt. Technol. Lett., Vol. 25, 360-363, 2000.
doi:10.1002/(SICI)1098-2760(20000605)25:5<360::AID-MOP19>3.0.CO;2-I Google Scholar
12. Kim, S. Y., J. W. Ra, and S. Y. Shin, "Diffraction by an arbitrary-angled dielectric wedge: part I - Physical optics approximation," IEEE Trans. Antennas Propagat., Vol. 39, 1272-1281, 1991.
doi:10.1109/8.81474 Google Scholar
13. Kim, S. Y., J. W. Ra, and S. Y. Shin, "Diffraction by an arbitrary-angled dielectric wedge. II. Correction to physical optics solution," IEEE Trans. Antennas Propagat., Vol. 39, 1282-1292, 1991.
doi:10.1109/8.81474 Google Scholar
14. Bernardi, P., R. Cicchetti, and O. Testa, "A three-dimensional UTD heuristic diffraction coefficient for complex penetrable wedges," IEEE Trans. Antennas Propagat., Vol. 50, 217-224, 2002.
doi:10.1109/8.997998 Google Scholar
15. Salem, M. A., A. H. Kamel, and A. V. Osipov, "Electromagnetic fields in presence of an infinite dielectric wedge," Proc. R. Soc. Lond. A, Vol. 462, 2503-2522, 2006.
doi:10.1098/rspa.2006.1691 Google Scholar
16. Daniele, V. and G. Lombardi, "The Wiener-Hopf solution of the isotropic penetrable wedge problem: Diffraction and total field," IEEE Trans. Antennas Propagat., Vol. 59, 3797-3818, 2011.
doi:10.1109/TAP.2011.2163780 Google Scholar
17. Vasilev, E. N. and V. V. Solodukhov, "Diffraction of electromagnetic waves by a dielectric wedge," Radiophysics and Quantum Electronics, Vol. 17, 1161-1169, 1976.
doi:10.1007/BF01036512 Google Scholar
18. Vasilév, E. N., V. V. Solodukhov, and A. I. Fedorenko, "The integral equation method in the problem of electromagnetic waves diffraction by complex bodies," Electromagnetics, Vol. 11, 161-182, 1991.
doi:10.1080/02726349108908271 Google Scholar
19. Budaev, B., Diffraction by Wedges, Longman Scient, 1995.
20. Veruttipong, T. W., "Time domain version of the uniform GTD," IEEE Trans. Antennas Propagat., Vol. 38, 1757-1764, 1990.
doi:10.1109/8.102736 Google Scholar
21. Gennarelli, G. and G. Riccio, "Time domain diffraction by a right-angled penetrable wedge," IEEE Trans. Antennas Propagat., Vol. 60, 2829-2833, 2012.
doi:10.1109/TAP.2012.2194668 Google Scholar
22. Gennarelli, G. and G. Riccio, "Obtuse-angled penetrable wedges: A time domain solution for the diffraction coefficients," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 16, 2020-2028, 2013.
doi:10.1080/09205071.2013.831327 Google Scholar
23. Frongillo, M., G. Gennarelli, and G. Riccio, "TD-UAPO diffracted field evaluation for penetrable wedges with acute apex angle," J. Opt. Soc. Am. A, Vol. 32, 1271-1275, 2015.
doi:10.1364/JOSAA.32.001271 Google Scholar
24. Frongillo, M., G. Gennarelli, and G. Riccio, "Diffraction by a structure composed of metallic and dielectric 90˚ blocks," IEEE Antennas Wireless Propagat. Lett., Vol. 17, 881-885, 2018.
doi:10.1109/LAWP.2018.2820738 Google Scholar
25. Clemmow, P. C., The Plane Wave Spectrum Representation of Electromagnetic Fields, Oxford University Press, 1996.
doi:10.1109/9780470546598
26. Maliuzhinets, G. D., "Inversion formula for the Sommerfeld integral," Soviet Physics Doklady, Vol. 3, 52-56, 1958. Google Scholar
27. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House, 2000.